
Programming Tip 10.2: Don’t Use Type Tags

Some programmers build inheritance hierarchies with each object having
a string tag to indicate its class. They then query that string:

if (q->get_type() == "Question")
{ // Do something
}
else if (q->get_type() == "ChoiceQuestion")
{ // Do something else
}

This is a poor strategy. If a new class is added, then all these queries
need to be revised.

In contrast, the addition of a class NumericQuestion to our quiz
program required no hierarchy rewrite because it uses virtual functions,
not type tags.

Don’t add type tags to a hierarchy of classes -- use virtual functions
instead.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error 10.4: Slicing an Object Function Argument

It is legal to copy a derived-class object into a base-class
variable. However, any derived-class information is lost in
the process.

To avoid slicing, you can use pointers, as explained with
the Quiz array.

Slicing also occurs when a function has a polymorphic
parameter (that can belong to a base or a derived class).

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

References Avoid Slicing an Object Function Argument

An example of a poorly designed function that may slice away required
data:

void ask(Question q) // Error
{
 q.display();
 cout << "Your answer: ";
 getline(cin, response);
 cout << q.check_answer(response) << endl;
}

If you call this function with a ChoiceQuestion object, then the
parameter variable q is initialized with a copy of that object. But q is a
Question object; the derived-class information is sliced away.

Instead, use a reference parameter for the object:
void ask(const Question& q)

Now only the address is passed to the function, no data is sliced away,
and the virtual function display() works correctly.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error 10.5: Failing to Override a Virtual Function

Two functions can have the same name, provided they
differ in their parameter types – this is OVERLOADING,
not overriding. For example,

class Question
{
public:
 virtual void display() const;
 virtual void display(ostream& out) const;
 . . .
};

This differs from overriding, where a derived class
function re-implements a base class function with the
same name and the same parameter types.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Failing to Override a Virtual Function (2)

It is a common error to accidentally provide an overloaded function
when you actually mean to override a function. Consider this scary
example:

class ChoiceQuestion : public Question
{
public:
 void display(); /* Does not override

 Question::display() const */
 . . .
};

The display member function in the Question class has subtly different
parameters: the implicit parameter this is a const Question*,
whereas in the ChoiceQuestion class, the implicit parameter is not
const.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Override a Virtual Function (3) and the C++11 Fix

In C++ 11, you can use the reserved word override to tag any
member function that should override a virtual function:

class ChoiceQuestion : public Question
{
public:

 void display() override;
 . . .
};

If the member function does not override a virtual function, the compiler
generates an error. Then the programmer can realize the need to add
the missing const reserved word.

The compiler also generates an error if you forget to
declare the base class member function as virtual.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

HOW TO 10.1: Developing an Inheritance Hierarchy (1)

When you work with classes, some of which are general
and others more specialized, you want to organize them
into an inheritance hierarchy.

Step 1: List the classes that are part of the hierarchy.

Step 2: Organize the classes into an inheritance hierarchy.

Step 3: Determine the common responsibilities.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

HOW TO 10.1: Developing an Inheritance Hierarchy (2)

Step 4: Decide which functions are overridden in derived
classes.

Step 5: Define the public interface of each derived class

Step 6: Identify data members.

Step 7: Implement constructors and member functions.

Step 8: Allocate objects on the free store and process them

For a first example of this process, see the textbook for a bank account
class hierarchy. The following slides include another example.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (1)

Let's apply the 8-step Inheritance Hierarchy Method to:

Problem Statement: Implement payroll processing for 3
different kinds of employees:

• Hourly employees get paid an hourly rate, but if they work more
than 40 hours per week, the excess is paid at “time and a half”.
• Salaried employees get paid their salary, no matter how many
hours they work.
• Managers are salaried employees who get paid a salary and a
bonus.

Compute the pay for a collection of employees:
For each employee, ask for the number of hours worked

in a given week, then display the wages earned.
Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (2)

1: List the classes that are part of the hierarchy.
HourlyEmployee
SalariedEmployee
Manager
AND we need a base class that expresses the commonality among
them: Employee.

2: Organize the classes into an inheritance hierarchy.

Here is the UML diagram:

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (3)

3. Determine the common responsibilities of the classes.
We write pseudocode for processing the objects:

For each employee
 Print the name of the employee.
 Read the number of hours worked.
 Compute the wages due for those hours.

We conclude that the Employee base class has these
responsibilities:

Get the name.
Compute the wages due for a given number of hours.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (4)

4. Decide which functions are overridden in derived
classes.

In our example, there is no variation in employee
names, but salary is computed differently in each derived
class. We will declare the weekly_pay member function
as virtual in Employee.

class Employee
{
public:
 Employee();
 string get_name() const;
 virtual double weekly_pay(int hours_worked) const;
 ...
private:
 ...
}; Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (5)

5. Define the public interface of each class.

Construct employees from their name and salary:

HourlyEmployee(string name, double wage);
SalariedEmployee(string name, double salary);
Manager(string name, double salary, double bonus);

These constructors need to set the name of the Employee
base object. We will supply an Employee member function
set_name for this purpose. In this simple example, no
further member functions are required.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (6)

6. Identify data members.

List the data members for each class. If
you find a data member that is common to
all classes, be sure to place it in the base
class.

All employees have a name. Therefore,
the Employee class should have a data
member name.

What about the salaries? Hourly
employees have an hourly wage, whereas
salaried employees have an annual
salary. While it would be possible to store
these values in a data member of the
base class, it would not be a good idea.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (7a)
7. Implement constructors and member functions.

SalariedEmployee::SalariedEmployee(string
name, double salary)
{
 set_name(name);
 annual_salary = salary;
}

Here we use a member function.

We invoke a base-class constructor for the Manager constructor:

Manager::Manager(string name, double salary,
double bonus)
 : SalariedEmployee(name, salary)
{
 weekly_bonus = bonus;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (7b)
7. Implement constructors and member functions.
The weekly pay needs to be computed:
double HourlyEmployee::weekly_pay(int hours_worked)

const
{
 double pay = hours_worked * hourly_wage;
 if (hours_worked > 40)
 {
 pay = pay + ((hours_worked - 40) * 0.5) *

hourly_wage;
 }
 return pay;
}

double SalariedEmployee::weekly_pay(int hours_worked)
const

{
 const int WEEKS_PER_YEAR = 52;
 return annual_salary / WEEKS_PER_YEAR;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (7c)

7. Implement constructors and member functions.

For Manager, we need to call the version of weekly_pay
from the SalariedEmployee base class:

double Manager::weekly_pay(int hours) const
{
 return SalariedEmployee::weekly_pay(hours) +
weekly_bonus;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

WORKED EXAMPLE 10.1: Employee Hierarchy, Payroll (8)

8. Allocate objects on the free store and process them.

In our sample program, we populate a vector of pointers and
compute the weekly salaries:

vector<Employee*> staff;
staff.push_back(new HourlyEmployee("Morgan, Harry", 30));
...
for (int i = 0; i < staff.size(); i++)
{
 cout << "Hours worked by "<< staff[i]->get_name()<< ": ";
 int hours;
 cin >> hours;
 cout << "Salary: "<< staff[i]->weekly_pay(hours) << endl;
}

The complete code for this program is contained in
worked_example_1/salaries.cpp.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary (1)

Explain inheritance, base class, and derived class.
• A derived class inherits data and behavior from a base class.
• You can always use a derived-class object in place of a base-class
object.

Implement derived classes in C++.
• A derived class can override a base-class function by providing a new
implementation.
• The derived class inherits all data members and all functions that it
does not override.
• Unless specified otherwise, the base-class data members are
initialized with the default constructor.
• The constructor of a derived class can supply arguments to a
base-class constructor.

Manager::Manager(string name, double salary, double bonus)
 : SalariedEmployee(name, salary)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary (2)

Describe how a derived class can override functions from a base
class.
• A derived class can inherit a function from the base class, or it can
override it by providing another implementation.
• Use BaseClass::function notation to explicitly call a base-class
function.

Describe virtual functions and polymorphism.
• When converting a derived-class object to a base class, the
derived-class data is sliced away.
• A derived-class pointer can be converted to a base-class pointer.
• When a virtual function is called, the version belonging to the actual
type of the implicit parameter is invoked.
• Polymorphism (literally, “having multiple shapes”) describes objects
that share a set of tasks and execute them in different ways.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

