
Topic 2

1. Inheritance hierarchies
2. Implementing derived classes
3. Overriding member functions
4. Virtual functions and polymorphism

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Implementing Derived Classes

 Now for those different kinds of questions.

Each of the different kinds of questions IS-A Question

so we code by starting with the base class (Question)
and then we write code for what makes the different types

special versions of more general Question type.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Derived Classes Inherit All Data and Functions from the Base

 Through inheritance, each of the derived classes has the
data members and member functions set up in class

Question.

– plus “specialness” which is not inherited, but added in the
definition of each derived class

(We don’t rewrite the member functions)
(code reuse in action)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Derived Classes: ChoiceQuestion

class ChoiceQuestion : public Question
{
public:
 // New and changed member
 // functions will go here
private:
 // Additional data members
 // will go here
};

The : denotes inheritance

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

ChoiceQuestion – Analysis of the Problem

After a programmer has set the question
text and the several multiple choice answers

 the ChoiceQuestion object is asked to display
something like:

In which country was the inventor of C++ born?
1: Australia
2: Denmark
3: Korea
4: United States

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

ChoiceQuestion must have:

ChoiceQuestion must have:

• Storage for the various choices for the answer
– Question has the question text and correct answer, not

these
• A member function for adding another choice
• A display function

– The designer of the Question class could not have
known how to display this sort of multiple choice
question. It only has the question itself, not the choices.

– In the ChoiceQuestion class you will have to rewrite
the display function display.
• This is called overriding a member function.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Derived Classes: ChoiceQuestion Code

 After specifying the class you are inheriting from,
you only write the differences:

class ChoiceQuestion : public Question
{
public:
 ChoiceQuestion();
 void add_choice(string choice, bool correct);
 void display() const;
private:
 vector<string> choices;
};

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

class Question
{
public:
 Question();
 void set_text(string

question_text);
 void set_answer(string

correct_response);
 bool check_answer(string response)

const;
 void display() const;
private:
 string text;
 string answer;
};
class ChoiceQuestion : public Question
{
public:
 ChoiceQuestion();
 void add_choice(string choice, bool

correct);
 void display() const;
private:
 vector<string> choices;
};

Derived Class Diagram

ChoiceQuestion is one
type,
made of two parts:
 inherited (text, answer)
 and new (choices).

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Derived Classes Cannot Directly Read/Write Private Base Data

 The derived class inherits all data members
 and all functions that it does not override.

Consider:

Choice_question choice_question;
choice_question.set_answer("2");
//calls public member function of base class

choice_question.answer = "2"; //ERROR
// will not compile – private data only

accessible in member functions of base

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Derived Classes and Private Data of the Base Class

 This means that when you are writing the
ChoiceQuestion

member functions, you cannot directly access
any private data members in Question.

The derived class functions, just like any other function, can
only use the public interface of the base class.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

void ChoiceQuestion::add_choice(string choice, bool correct)
{
 choices.push_back(choice);
 if (correct) //change answer to this one's number
 {
 // Convert choices.size() to string

string num_str = to_string(choices.size());

 // Set num_str as the answer, using public function:
 set_answer(num_str);
 }
}

add_choice Member Function

Practice It: Derived Classes from Critter (1)

Here is the Critter class, from which we will derive others:
 (file critter.h)
class Critter
{
public:
 Critter(); //Constructs a critter at position 0 with blank history.
 string get_history() const; /** @return the history */
 void add_history(string event); /**Adds to the history
 @param event the event to add to the history */

 int get_position() const;
 void move(int steps); // @param steps the number of steps to move.
 void act(); //The action of this critter in one pass of simulation.

private:
 int position;
 vector<string> history;
};

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Practice It: Derived Classes from Critter (2)

Define a class Sloth derived from Critter. Sloths alternate between
eating and sleeping. Add the word "eat" or "sleep" to the history each
time the act function is called.

#include <iostream>
using namespace std;
#include "critter.h"
/** A sloth eats and sleeps.*/
class Sloth : public Critter
{
public:
 Sloth();
 . . .
private:
 . . .
};
Sloth::Sloth(){ . . .}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Practice It: Derived Classes from Critter (3)

Define a derived class NervousCritter from Critter. A nervous critter
moves nervously between positions 0 and 1. In the act function, carry
out the appropriate move.

#include <iostream>
using namespace std;
#include "critter.h"
/** A nervous critter moves back and forth between
positions 0 and 1.*/
class NervousCritter . . .
{
public:
 . . .
};

. . .

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Here is the class definition for ChoiceQuestion again.
 It has one small error. Can you find it?

class ChoiceQuestion : Question
{
public:
 ChoiceQuestion();
 void add_choice(string choice, bool correct);
 void display() const;
private:
 vector<string> choices;
};

Common Error 10.1: Private Inheritance

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error: Private Inheritance
If you do not specify public inheritance,

you get private inheritance.

class ChoiceQuestion : _________ Question
{
public:
 ChoiceQuestion();
 void add_choice(string choice, bool correct);
 void display() const;
private:
 vector<string> choices;
};

Private inheritance: only member functions of ChoiceQuestion get to call
member functions of Question.

Whenever a main() invokes a Question member function on a
ChoiceQuestion object, the compiler will flag it as an error:

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

A derived class has no direct access to base class private
data. The following code therefore won't compile, with an

“unknown identifier in this scope: text” error message:

ChoiceQuestion::ChoiceQuestion(string quest_txt)
{
 text = quest_txt; //text is in the base class
}

When some programmers encounter that compiler error,

they just start hacking…

Common Error: Replicating Base Class Members

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error: Replicating Base Class Members (2)
And an “easy” fix seems to be to add the data member that the
compiler is complaining about.

class ChoiceQuestion : public Question
{
 ChoiceQuestion::ChoiceQuestion(string quest_txt)
 ...
 private:
 vector<string> choices;
 string text; //hacking addition, a mistake
}

Now it compiles, but it doesn’t set the correct text! Such a ChoiceQuestion
object has 2 data members named text. The constructor sets one, and the
display function uses the other.
Instead of replicating a base-class data member, you need to call
a member function to initialize it: set_text(quest_txt)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Consider a program that tracks fuel efficiency of cars by
logging the distance traveled and the refueling amounts.

Some cars are hybrids. Should you create a derived class
HybridCar? Not in this application.

Hybrids don’t behave any differently than other cars when it
comes to driving and refueling. They just have better MPG. A
single Car class with a data member

double miles_per_gallon;
is entirely sufficient.

However, in a program showing repairs of different kinds of
vehicles, you need a separate class HybridCar, as their
repairs behave differently.

Inheritance Is For Behaviors, Not Values

Calling the Base-Class Constructor (1)

A derived-class constructor can only initialize the data
members of the derived class.

But the base-class data members also need to be
initialized.

Unless you specify otherwise, the base-class data
members are initialized with the default constructor of the
base class.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Calling the Base-Class Constructor (2)

If you want to use another base-class constructor, you use
an initializer list. For example, suppose the Question base
class had a constructor setting the question text. Here is a
derived-class constructor calling that base-constructor:

ChoiceQuestion::ChoiceQuestion(string question_text)
 : Question(question_text)
{ . . .
}

The constructor of a derived class can supply arguments to
a base-class constructor.
The base-class constructor acts before the derived class
code inside the { }.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

