
Topic 4

1. Inheritance hierarchies
2. Implementing derived classes
3. Overriding member functions
4. Virtual functions and polymorphism

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

An Array of Questions?

 In the main function of that last program,
there was some repetitive code to display
each question and check the responses.

 It would be nicer if all questions were collected in a single
array, though some are base Questions and some are

ChoiceQuestions.

You could then loop to present them to the user:

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

First Attempt at Code for an Array of Questions
const int QUIZZES = 2;
Question quiz[QUIZZES];
quiz[0].set_text("Who was the inventor of C++?");
quiz[0].set_answer("Bjarne Stroustrup");

ChoiceQuestion cq;
cq.set_text("In which country was the inventor of C++ born?");
cq.add_choice("Australia", false);
...

quiz[1] = cq;

for (int i = 0; i < QUIZZES; i++)
{
 quiz[i].display();
 cout << "Your answer: ";
 getline(cin, response);
 cout << quiz[i].check_answer(response) << endl;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Slicing Problem

However, is it really working?

Here’s a run of the program:

Who was the inventor of C++?
Your answer: Bjarne Stroustrup
true
In which country was the inventor of C++ born?
Your answer:

Where are the choices for the ChoiceQuestion?

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Slicing Problem (2)

The array quiz holds Questions. The compiler realizes that a
ChoiceQuestion is a special case of a Question. Thus it permits :

quiz[1] = cq;
However, a ChoiceQuestion object has 3 data members, whereas a
Question has just 2. There is no room to store the derived-class data in
the array.

That data simply gets sliced away when you assign a derived-class
object to a base-class variable.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Use Pointers Instead

 To access objects from different classes
in a class hierarchy, use an array of pointers to objects

instead of an array of objects.

 (to avoid slicing).

Pointers to the various objects all have the same size:
 the size of a memory address.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Pointers to Base and Derived Classes

 Pointers to base classes can hold pointers
to ANY object publicly derived from it

 – as far down the inheritance chain as you want to go.

 The opposite will not work:

Assigning a base pointer to a derived pointer location
will generate a compiler error.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Pointers to Base and Derived Classes (2)

To manage all of these, use a
vector<Question*> qv;

or an array of
Question* quiz[2];

 and store
only pointers to the different kinds of Questions

• Fill-in-the-blank
• Numeric

Free response
• Choice (single)

– Choice (multiple – inherits from Choice (single)
• Essay

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Code for Pointers to Base and Derived Classes

 Notice the use of new and -> :

Question* quiz[2];

quiz[0] = new Question;
quiz[0] -> set_text("Who was the inventor of C++?");
quiz[0] -> set_answer("Bjarne Stroustrup");

ChoiceQuestion* cq_pointer = new ChoiceQuestion;
cq_pointer -> set_text("In which country… …C++ born?");
cq_pointer -> add_choice("Australia", false);
...
quiz[1] = cq_pointer;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Diagram of Pointers to Base to Manage Base and Derived

Question* quiz[2];
quiz[0] = new Question;
quiz[1] = new ChoiceQuestion;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

for (int i = 0; i < QUIZZES; i++)
{
 quiz[i] -> display();
 cout << "Your answer: ";
 getline(cin, response);
 cout << quiz[i] -> check_answer(response) << endl;
}

The Code to Display All the Questions in the Pointer Array

 The code to present all questions – any kind of Question – is:

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Virtual Functions: Motivation

 When you call the display member function on a
 Question* pointer that currently contains a pointer to a

 ChoiceQuestion, you want the choices to be displayed.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Virtual Functions: Motivation (2)

 But that’s not what happens.

For reasons of efficiency, by default, the call

quiz[i]->display();

always calls Question::display
because the type of quiz[i] is Question*.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Virtual Functions: Mechanism

 In C++, you must alert the compiler
that the function call needs to not be the default,

that the function should be the one in the thing pointed to.

 (How?)

 You use the virtual reserved word for this purpose.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The virtual reserved word must be used in the base class.

class Question
{
public:
 Question();
 void set_text(string question_text);
 void set_answer(string correct_response);
 virtual bool check_answer(string response) const;
 virtual void display() const;
private:
...
};

All functions with the same name and parameter types
in derived classes are then automatically virtual.

Virtual Functions Must Be Declared in the Base Class

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

class ChoiceQuestion : public Question
{
public:
 ChoiceQuestion();
 void add_choice(string choice, bool correct);
 virtual void display() const;
private:
...
};

Virtual Functions: Derived Classes

 Although not needed, it is considered good practice to write
the virtual reserved word in the derived-class functions in

the derived-class interface.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

You do not write virtual in the function definition, only in
the interface header in the class xxx{}; statement:

void Question::display() const
{
 cout << text << endl;
}

When a virtual function is called, the compiled code determines
the type of the implicit parameter at run time. The appropriate
function for that object is then called. For example:

quiz[i]->display();

always calls the function belonging to the actual type of the object
to which quiz[i] points — either
Question::display or ChoiceQuestion::display.

You do NOT Write virtual in the Function Definition

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Polymorphism

The quiz vector collects a mixture of all kinds of Questions.

Such a collection is called polymorphic
(literally, “of multiple shapes”).

Objects in a polymorphic collection have some
commonality but are not necessarily of the same type.

 Inheritance is used to express this commonality.

 virtual functions enable variations in behavior.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Polymorphism (2)

 Each object knows
on its own

how to carry out its specific version
of these general tasks:

 “Display the question”
 (my way)

 and
 “Check a response”

 (my way).

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Polymorphism (3)

Suppose we want to have a new
 kind of question for calculations,

where we are willing to accept an approximate answer.

 All we need to do is to define a new class NumericQuestion,
with its own check_answer function.

Then we can populate any quiz vector with a
mixture of plain questions, choice questions,

 and these new numeric questions.

They will fit in just fine because:
 they IS-A Questions.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Complete Program: Polymorphism & Virtual Functions (1)
// question.h
#ifndef QUESTION_H
#define QUESTION_H

#include <string>
using namespace std;

class Question
{
public:
 /**
 Constructs a question with empty question and answer.
 */
 Question();

 /**
 @param question_text the text of this question
 */
 void set_text(string question_text);

 /**
 @param correct_response the answer for this question
 */
 void set_answer(string correct_response);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Complete Program: Polymorphism & Virtual Functions (2)

 /**
 @param response the response to check
 @return true if the response was correct,
 false otherwise
 */
 virtual bool check_answer(string response) const;

 /**
 Displays this question.
 */
 virtual void display() const;

private:
 string text;
 string answer;
};

#endif

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Complete Program: Polymorphism & Virtual Functions (3)
// choicequestion.h

#ifndef CHOICEQUESTION_H
#define CHOICEQUESTION_H

#include <vector>
#include "question.h"

class ChoiceQuestion : public Question
{
public:
 /**
 Constructs a choice question with no choices.
 */
 ChoiceQuestion();
 /**
 Adds an answer choice to this question.
 @param choice the choice to add
 @param correct true if this is the correct choice,
 false otherwise
 */
 void add_choice(string choice, bool correct); virtual void display() const;

private:
 vector<string> choices;
};
#endif

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Complete Program: Polymorphism & Virtual Functions (4)

// sec04/demo.cpp

#include <iostream>
#include "question.h"
#include "choicequestion.h"
int main()
{
 string response;
 cout << boolalpha;

 // Make a quiz with two questions
 const int QUIZZES = 2;
 Question* quiz[QUIZZES];

 quiz[0] = new Question;
 quiz[0]->set_text("Who was the inventor of C++?");
 quiz[0]->set_answer("Bjarne Stroustrup");

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Complete Program: Polymorphism & Virtual Functions (5)

 ChoiceQuestion* cq_pointer = new ChoiceQuestion;
 cq_pointer->set_text("In which country was the inventor of C++
born?");
 cq_pointer->add_choice("Australia", false);
 cq_pointer->add_choice("Denmark", true);
 cq_pointer->add_choice("Korea", false);
 cq_pointer->add_choice("United States", false);
 quiz[1] = cq_pointer;

 // Check answers for all questions
 for (int i = 0; i < QUIZZES; i++)
 {
 quiz[i]->display();
 cout << "Your answer: ";
 getline(cin, response);
 cout << quiz[i]->check_answer(response) << endl;
 }
 return 0;
}

