
Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Two: Fundamental
 Data Types

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Goals

• To define and initialize variables and constants
• To understand the properties and limitations of integer

and floating-point numbers
• To write arithmetic expressions and assignment

statements in C++
• To appreciate the importance of comments and good

code layout
• To create programs that read and process input, and

display the results
• To process strings, using the standard C++ string type

Topic 1

1. Variables
2. Arithmetic
3. Input and output
4. Problem solving: first do it by hand
5. Strings
6. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variables

• A variable
– is used to store information:

• the contents of the variable:
– can contain one piece

of information at a time.
– has an identifier:

• the name of the variable
–

The programmer picks a good name
• A good name describes the contents of the

variable or what the variable will be used for

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variables: Like a Parking Garage

Parking garages store cars.

Each parking space is identified
 – like a variable’s identifier
Each parking space “contains” a car

– like a variable’s current contents
Each space can contain only one car

and not trucks or buses, just a car
Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Definitions

• When creating variables, the programmer specifies
the type of information to be stored.
– (more on types later)

• Unlike a parking space, a variable is often given an
initial value.
– Initialization is putting a value into a variable

when the variable is created.
– Initialization is not required.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The following statement defines a variable:
int cans_per_pack = 6;

cans_per_pack is the variable’s name.

Variable Definitions: Example

 int
indicates that the variable cans_per_pack

 will hold integers. Other variable types covered later will hold
strings and floating-point numbers.

 = 6
indicates that the variable cans_per_pack

 will initially contain the value 6.

Like all statements, it must end with a semicolon.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Definitions: More Examples

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Table 1: Variable Definitions in C++
Comment

int cans = 6; Defines an integer variable and initializes it with 6.

int total = cans +
bottles;

The initial value need not be a constant. (Of
course, cans and bottles must have been previously defined.)

int bottles =
"10";

Error: You cannot initialize an int variable with a string.

int bottles;
Defines an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.2.

int cans, bottles;
Defines two integer variables in a single statement. In this book,
we will define each variable in a separate statement.

bottles = 1;
Caution: The type is missing. This statement is not a definition
but an assignment of a new value to an existing
variable—see Section 2.1.4.

Number Types

A number written by a programmer is called a number literal.

There are rules for writing literal values:

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Number Literals: Table 2

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Number Type Comment
6 int An integer has no fractional part.

–6 int Integers can be negative.
0 int Zero is an integer.

0.5 double A number with a fractional part has type double.

1.0 double An integer with a fractional part .0 has type double.

1E6 double
A number in exponential notation: 1 × 106 or 1000000.
Numbers in exponential notation always have
type double.

2.96E-2 double Negative exponent: 2.96 × 10–2 = 2.96 / 100 = 0.0296

100,000 Error: Do not use a comma as a decimal separator.

3 1/2 Error: Do not use fractions; use decimal notation: 3.5.

Number Type Examples

• What is the C++ type of each of the following numbers? Write "error"
if the number is not valid.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

3
-3
3.14
3.0
3E-6
300,000
3 14/100

Variable Names

• When you define a variable, you should pick a
name that explains its purpose.

• For example, it is better to use a descriptive
name, such as can_volume, than a terse name,
such as cv.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Naming Rules

1. Variable names must start with a letter or the underscore
(_) character, and the remaining characters must be letters
numbers, or underscores.

2. Do not use other symbols such as $ or %. Spaces are not
permitted inside names; you can use an underscore
instead, as in can_volume.

3. Variable names are case-sensitive, that is, can_volume
and can_Volume are different names.
For that reason, it is a good idea to use only lowercase
letters in variable names.

4. You cannot use reserved words such as double or
return as names; these words are reserved exclusively
for their special C++ meanings. See Appendix B.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Name Examples: Table 3

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Name Comment

can_volume1
Variable names consist of letters, numbers, and the
underscore character.

x

In mathematics, you use short variable names such
as x or y. This is legal in C++, but not very common,
because it can make programs harder to understand
(see Programming Tip 2.1)

Can_volume
Caution: Variable names are case sensitive. This variable
name is different from can_volume.

6pack Error: Variable names cannot start with a number.

can volume Error: Variable names cannot contain spaces.

double
Error: You cannot use a reserved word as a variable
name.

ltr/fl.oz Error: You cannot use symbols such as . or /

The Assignment Statement

• The contents in variables can “vary” over time
(hence the name!).

• Variables can be changed by
– assigning to them

• The assignment statement
– using the increment or decrement operator
– inputting into them

• The input statement

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Assignment Statement Example

• An assignment statement
 stores a new value in a variable,

replacing the previously stored value.

cans_per_pack = 8;

 This assignment statement changes the value stored
in cans_per_pack to be 8.

 The previous value is replaced.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Assignment Statement: Defining vs. Assigning

• There is an important difference between a variable
definition and an assignment statement:

int cans_per_pack = 6; // Variable definition
...
cans_per_pack = 8; // Assignment statement

• The first statement is the definition of cans_per_pack.
– A variable's definition must occur only once in a program

• The second statement is an assignment statement.
An existing variable’s contents are replaced.
– The same variable may be in several assignment statements in a

program.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Meaning of the Assignment = Symbol

• The = in an assignment does not mean the left hand
side is equal to the right hand side as it does in math.

• = is an instruction to do something:
copy the value of the expression on the right

into the variable on the left.

• Consider what it would mean, mathematically, to state:
counter = counter + 2;

counter EQUALS counter + 2 ?

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Assignment Examples

counter = 11; // set counter to 11
counter = counter + 2; // increment

1. First statement assigns 11 to counter
2. Second statement looks up what is currently in counter (11)
3. Then it adds 2 and copies the result of the addition

into the variable on the left, changing counter to 13

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Constants

• Sometimes the programmer knows certain values just
from analyzing the problem
– For this kind of information, use the reserved word const.

• The reserved word const is used to define a constant.
• A const is a "variable" whose contents cannot be

changed and must be set when created.
(Most programmers just call them constants, not variables.)

• Constants are commonly written using capital letters to
distinguish them visually from regular variables:

const double BOTTLE_VOLUME = 2;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Constants Prevent Unclear Numbers in Code

Another good reason for using constants:

double volume = bottles * 2;

What does that 2 mean?

If we use a constant there is no question:

double volume = bottles * BOTTLE_VOLUME;

Any questions?

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Constants Prevent Unclear Numbers in Code (2)

And still another good reason for using constants:

double bottle_volume = bottles * 2;
double can_volume = cans * 2;

What does that 2 mean?
— WHICH 2?

It is not good programming practice to use magic numbers.
Use constants.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Constants Prevent Unclear Numbers in Code (3)

And it can get even worse …

Suppose that the number 2 appears hundreds of times
throughout a five-hundred-line program?

Now we need to change the BOTTLE_VOLUME to 2.23
(because we are now using a bottle with a different shape)

How to change only some of those 2’s?

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Constants again

Constants to the rescue!

const double BOTTLE_VOLUME = 2.23;
const double CAN_VOLUME = 2;

...

double bottle_volume = bottles * BOTTLE_VOLUME;
double can_volume = cans * CAN_VOLUME;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Comments

• Comments are explanations for human readers of your
code (other programmers or your instructor).

• The compiler ignores comments completely.
• A leading double slash // tells the compiler the remainder of

this line is a comment, to be ignored
• For example,

double can_volume = 0.355; // Liters in a 12-ounce can

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Comments: // or /* multi-line */

Comments can be written in two styles:
• Single line:

double can_volume = 0.355; // Liters in a 12-ounce can

The compiler ignores everything after // to the end of line

• Multiline for longer comments, where the compiler ignores
everything between /* and */

 /*
 This program computes the volume (in liters)
 of a six-pack of soda cans.
*/

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

/* This program computes the volume (in liters) of a six-pack of
soda cans and the total volume of a 6-pack and a 2-liter bottle.*/
int main() {
 int cans_per_pack = 6;
 const double CAN_VOLUME = 0.355; // Liters in a 12-ounce can
 double total_volume = cans_per_pack * CAN_VOLUME;

 cout << "A six-pack of 12-ounce cans contains "
 << total_volume << " liters." << endl;

 const double BOTTLE_VOLUME = 2; // Two-liter bottle

 total_volume = total_volume + BOTTLE_VOLUME;

 cout << "A six-pack and a two-liter bottle contain "
 << total_volume << " liters." << endl;

 return 0;
}

Complete Program: volume1.cpp

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error – Using Undefined Variables

You must define a variable before you use it for the first time.
For example, the following sequence of statements would not
be legal:

double can_volume = 12 * liter_per_ounce;
double liter_per_ounce = 0.0296;

Statements are compiled in top to bottom order.

When the compiler reaches the first statement, it does not
know that liter_per_ounce will be defined in the next
line, and it reports an error.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error – Using Uninitialized Variables

Initializing a variable is not required, but there is always a
 value in every variable, even uninitialized ones.

Some value will be there, the flotsam left over from some
previous calculation or simply the random value there
when the transistors in RAM were first turned on.

int bottles; // Forgot to initialize
int bottle_volume = bottles * 2;

What value would be output from the following statement?

cout << bottle_volume << endl; // Unpredictable

 // Result is unpredictable

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

More Numeric Types in C++

In addition to the int and double types,
C++ has several other numeric types.

C++ has two other floating-point types.

The float type uses half the storage of the double type
that we use in this book, but float can only store 6–7
digits.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The float and long double types

• Many years ago, when computers had far less memory
than they have today, float was the standard type for
floating-point computations, and programmers would
indulge in the luxury of “double precision” only when they
really needed the additional digits.

• Today, the float type is rarely used.

• The third type is called long double
and is for quadruple precision.

• Most contemporary compilers use this type when a
programmer asks for a double so just choose double.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Floating Point

By the way, these numbers are called “floating-point” because
of their internal representation in the computer.

Consider the numbers 29600, 2.96, and 0.0296.
They can be represented in a very similar way:

• a sequence of the significant digits: 296
• an indication of the position of the decimal point.

• When the values are multiplied or divided by 10, only the
position of the decimal point changes; it “floats”.

Computers use base 2, not base 10, but the principle is the
same.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Numeric Types in C++: Table 4

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The C++ Standard does not completely specify the number of bytes or
ranges.

Values above are typical.

Type Typical Range Typical Size
(Bytes)

int –2,147,483,648 … 2,147,483,647 (about 2 billion) 4

unsigned 0 … 4294967295 4

short –32,768 … 32,767 2

unsigned
short

0 … 65,535 2

long
long

–9,223,372,036,854,775,808 …
9,223,372,036,854,775,807

8

double ±10308 with about 15 significant decimal digits 8

float ±1038 with about 7 significant decimal digits 4

Numeric Types: short and long, unsigned

In addition to the int type, C++ has these additional
integer types: short, long.

• For each integer type, there is an unsigned equivalent:
unsigned short, unsigned long

• short typically has a range from –32,768 to 32,767
• unsigned short has range 0 to 65,535. (216 -1)

A short value uses 16 bits, which can encode 216 =
65,536 values.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Integer Overflow
The int type has a limited range:

 On most platforms, it can represent numbers up to a
 little more than two billion.

For many applications, this is not a problem, but you
cannot use an int to represent the world population.

If a computation yields a value that is outside the int
range, the result overflows.

No error is displayed.

Instead, the result is truncated to fit into an int, yielding
a value that is most likely WRONG.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Integer Overflow Example

For example:

int one_billion = 1000000000;
cout << 3 * one_billion << endl;

displays –1294967296 because the result is larger
than an int can hold.

In situations such as this, you could instead use
the double type.

However, you will need to think about a related issue:
roundoff errors.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error – Roundoff Errors
This program produces the wrong output, even though it

uses the very precise double variable type:

#include <iostream>
using namespace std;
int main() {
 double price = 4.35;
 int cents = 100 * price;

// Should be 100 * 4.35 = 435
 cout << cents << endl;

// Prints 434!
 return 0;
}

Why?

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error – Roundoff Errors, continued
• In computers, numbers are binary, not decimal.
• In the binary system, there is no exact representation for

decimal 4.35, just as there is no exact representation for
⅓ in the decimal system (nor in binary).

• The binary representation is just a little less than 4.35, so
100 times that value is just a little less than 435.
– And when a double value is assigned to an int variable, as in

int cents = 100 * price;

The fractional part is simply discarded (truncated).

• The remedy is to add 0.5 in order to round to the
nearest integer:

int cents = 100 * price + 0.5;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

