
Topic 3

1. The if statement
2. Comparing numbers and strings
3. Multiple alternatives
4. Nested branches
5. Problem solving: flowcharts
6. Problem solving: test cases
7. Boolean variables and operators
8. Application: input validation
9. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Multiple Alternatives Need Multiple Nested if() Statements

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

In the case of the Richter Scale for earthquake magnitude,
there are five branches:

one each for the four descriptions of damage, and a
"default" fifth one for no destruction (not shown).

Table 3 Richter Scale
Value Effect

8 Most structures fall
7 Many buildings destroyed

6 Many buildings considerably damaged, some
collapse

4.5 Damage to poorly constructed buildings

Flowchart for the Richter Scale Code

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Multiple Alternatives (Richter Scale Code)
if (richter >= 8.0)
{
 cout << "Most structures fall";
}
else if (richter >= 7.0)
{
 cout << "Many buildings destroyed";
}
else if (richter >= 6.0)
{
 cout << "Many buildings considerably damaged, some collapse";
}
else if (richter >= 4.5)
{
 cout << "Damage to poorly constructed buildings";
}
else
{
 cout << "No destruction of buildings";
}
. . . Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

Multiple Alternatives – Order of Tests

Because of this execution order,
when using multiple if statements,

pay attention to the order of the conditions.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Multiple Alternatives – Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order
{
 cout << "Damage to poorly constructed buildings";
}
else if (richter >= 6.0)
{
 cout << "Many buildings considerably damaged, some collapse";
}
else if (richter >= 7.0)
{
 cout << "Many buildings destroyed";
}
else if (richter >= 8.0)
{
 cout << "Most structures fall";
}

Suppose the value of richter is 7.1. Because we tested small first with a
>=, the first statement is (wrongly) printed.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The switch Statement vs. the if statement

• Below is a complicated if() statement to choose a text string to
assign based on the value of an int variable:

int digit;
… //digit variable gets set here by some code
if (digit == 1) { digit_name = "one"; }
else if (digit == 2) { digit_name = "two"; }
else if (digit == 3) { digit_name = "three"; }
else if (digit == 4) { digit_name = "four"; }
else if (digit == 5) { digit_name = "five"; }
else if (digit == 6) { digit_name = "six"; }
else if (digit == 7) { digit_name = "seven"; }
else if (digit == 8) { digit_name = "eight"; }
else if (digit == 9) { digit_name = "nine"; }
else { digit_name = ""; }

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The switch Statement

• The switch statement is an alternative to nested if() else
statements. But switch is at least as awkward to code as nested if()
else:

int digit; //switch can only test int and char types
… //digit variable gets set here by some code
switch(digit)
{

case 1: digit_name = "one"; break;
case 2: digit_name = "two"; break;
case 3: digit_name = "three"; break;
case 4: digit_name = "four"; break;
case 5: digit_name = "five"; break;
case 6: digit_name = "six"; break;
case 7: digit_name = "seven"; break;
case 8: digit_name = "eight"; break;
case 9: digit_name = "nine"; break;
default: digit_name = ""; break; //taken if none of the
above

}
Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

break statements in the switch statement

• Every branch of the switch must be terminated by a break statement.
And each branch must terminate with a semicolon.

• break tells the machine to skip down to the end of the switch
statement, because a match was found.

• If the break is missing, execution falls through to the next branch, and so
on, until finally a break or the end of the switch is reached.

• In practice, this fall-through behavior is rarely useful, and
it is a common cause of errors.

• If you accidentally forget the break statement, your program compiles
but executes unwanted code. Try it and see!

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Topic 4

1. The if statement
2. Comparing numbers and strings
3. Multiple alternatives
4. Nested branches
5. Problem solving: flowcharts
6. Problem solving: test cases
7. Boolean variables and operators
8. Application: input validation
9. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

• In the United States different tax rates are used depending on the
taxpayer’s marital status – single rates are higher.

• Married taxpayers add their income together and pay taxes on the total.
See the IRS table below from a recent year:

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Table 4 Federal Tax Rate Schedule

If your status is Single
and

if the taxable income is
the tax is of the amount over

at most $32,000 10% $0

over $32,000 $3,200 + 25% $32,000

If your status is Married
and

if the taxable income is
the tax is of the amount over

at most $64,000 10% $0

over $64,000 $6,400 + 25% $64,000

Flowchart for Tax Table Decisions

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes – Complete Code part 1

#include <iostream>
#include <string>
using namespace std;

int main()
{
 const double RATE1 = 0.10;
 const double RATE2 = 0.25;
 const double RATE1_SINGLE_LIMIT = 32000;
 const double RATE1_MARRIED_LIMIT = 64000;

 double tax1 = 0;
 double tax2 = 0;

 double income;
 cout << "Please enter your income: ";
 cin >> income;

 cout << "Please enter s for single, m for married: ";
 string marital_status;
 cin >> marital_status;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes (Code part 2)

if (marital_status == "s")
 {
 if (income <= RATE1_SINGLE_LIMIT)
 {
 tax1 = RATE1 * income;
 }
 else
 {
 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
 tax2 = RATE2 * (income -

RATE1_SINGLE_LIMIT);
 }
 }
else

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes (Code part 3)

 {
 if (income <= RATE1_MARRIED_LIMIT)
 {
 tax1 = RATE1 * income;
 }
 else
 {
 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
 }
 }

 double total_tax = tax1 + tax2;

 cout << "The tax is $" << total_tax << endl;
 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Hand-Tracing

• A very useful technique for understanding whether a

program works correctly is called hand-tracing.

• You simulate the program’s activity on a sheet of paper.

• You can use this method with pseudocode or C++ code.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Hand-Tracing, How to

• Looking at your pseudocode or C++ code,
– Use a marker, such as a paper clip,

(or toothpick from an olive)
to mark the current statement.

– “Execute” the statements one at a time.
– Every time the value of a variable changes,

cross out the old value, and
write the new value below the old one.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Hand-Tracing the Tax Program

int main()
{
 const double RATE1 = 0.10;
 const double RATE2 = 0.25;
 const double RATE1_SINGLE_LIMIT = 32000;
 const double RATE1_MARRIED_LIMIT = 64000;

 double tax1 = 0;
 double tax2 = 0;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Hand-Tracing, Filling in the Trace Table

double income;
 cout << "Please enter your income: ";
 cin >> income;

Assume user typed 80000.

cout << "Please enter s for single, m for married: ";
 string marital_status;
 cin >> marital_status;

The user typed m

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Hand-Tracing #2

 if (marital_status == "s")

 {
 if (income <= RATE1_SINGLE_LIMIT)
 {
 tax1 = RATE1 * income;
 }
 else
 {
 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
 }
 }
 else //this branch is taken because marital_status != "s"

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Hand-Tracing #3

 else
 {
 if (income <= RATE1_MARRIED_LIMIT)
 {
 tax1 = RATE1 * income;
 }
 else
 {
 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
 }
 }
 double total_tax = tax1 + tax2;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Hand-Tracing #4

 else
 {
 if (income <= 64000) //this branch is skipped, false
 {
 tax1 = RATE1 * income;
 }
 else //this branch is taken
 {
 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
 }
 }
 double total_tax = tax1 + tax2;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Hand-Tracing #5

 else
 {
 if (income <= RATE1_MARRIED_LIMIT)
 {
 tax1 = RATE1 * income;
 }
 else //executed
 {
 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
 }
 }
 double total_tax = tax1 + tax2; //always executed

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

