
Topic 7

1. The if statement
2. Comparing numbers and strings
3. Multiple alternatives
4. Nested branches
5. Problem solving: flowcharts
6. Problem solving: test cases
7. Boolean variables and operators
8. Application: input validation
9. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Boolean Variables and Operators

• Sometimes you need to evaluate a logical condition
in one part of a program and use it elsewhere.

• To store a condition that can be true or false, you
use a Boolean variable

• Variables of type bool can hold exactly two values,
false or true.
– not strings.
– not integers; they are special values, just for Boolean

variables.
– BUT actually false is zero, and any non-zero value is

treated as true.

Big C++ by Cay Horstmann
Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Variables

Here is a definition of a Boolean variable, initialized to
false:

bool failed = false;

It can be set by an intervening statement so that you can
use the value later in your program to make a decision:

// Only executed if failed has
// been set to true
if (failed)
{

...
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Boolean Operators Motivation

• Suppose you need to write a program that
processes temperature values, and you want to
test whether a given temperature corresponds to
liquid water.
– At sea level, water freezes at 0 degrees

Celsius and boils at 100 degrees.
• Water is liquid if the temperature is greater than

zero and less than 100.
• This not a simple test condition.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Boolean Operators

• When you make complex decisions, you often
need to combine Boolean values.

• An operator that combines Boolean conditions is
called a Boolean operator.

• Boolean operators take one or two Boolean
values or expressions and combine them into a
resultant Boolean value.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Boolean Operator && (and)

• In C++, the && operator (called and) yields true
only when both conditions are true.

if (temp > 0 && temp < 100)
{
 cout << "Liquid";
}

• If temp is within the range, then both the left-hand
side and the right-hand side are true, making the
whole expression’s value true.

• In all other cases, the whole expression’s value is
false.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Boolean Operator || (or)

• The || operator (called or) yields the result true
if at least one of the conditions is true.
– This is written as two adjacent vertical bar symbols.

if (temp <= 0 || temp >= 100)
{

 cout << "Not liquid";
}

• If either of the expressions is true,
the whole expression is true.

• The only way “Not liquid” won’t appear is if both of
the expressions are false.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Boolean Operator ! (not)

• Sometimes you need to invert a condition with the
logical not operator.

• The ! operator takes a single condition and evaluates
to true if that condition is false and to false if the
condition is true.

if (!frozen) { cout << "Not frozen"; }

• “Not frozen” will be written only when frozen contains
the value false.

• !false is true.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Boolean Operator Truth Tables

• This information is traditionally collected into a table called a
truth table, where A and B denote bool variables or
Boolean expressions.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

A B A && B A B A || B A !A

true true true true true true true false

true false false true false true false true

false true false false true true

false false false false false false

Boolean Operator Examples: Table 6 (Part 1)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Table 6 Boolean Operators
Expression Value Comment

0 < 200 &&
200 < 100

false
Only the first condition is true. Note that
the < operator has a higher precedence
than the && operator.

0 < 200 ||
200 < 100

true The first condition is true.

0 < 200 ||
100 < 200

true
The || is not a test for “either-or”. If both
conditions are true, the result is true.

0 < 200 <
100

true

Error: The expression 0 < 200 is true,
which is converted to 1. The expression 1
< 100 is true. You never want to write such
an expression; see Common Error 3.5.

Boolean Operator Examples: Table 6 (Part 2)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Expression Value Comment

-10 &&
10 > 0

true
Error: –10 is not zero. It is converted
to true. You never want to write such an
expression; see Common Error 3.5.

0<x &&
x<100 ||
x== -1

(0<x && x
<100) ||
x== -1

The && operator has a higher precedence
than the || operator.

!(0 <
200)

false
0 < 200 is true, therefore its negation
is false.

frozen
== true

frozen
There is no need to compare a Boolean
variable with true.

frozen
== false

!frozen
It is clearer to use ! than to compare
with false.

Common Error – Combining Multiple Relational Operators

• Consider the expression
if(0 <= temp <= 100)…

This looks just like the mathematical test:

 0 ≤ temp ≤ 100

• Unfortunately, it is not. It will compile OK, but will not run the
way you expect.

• DO NOT USE THAT SYNTAX IN C++. INSTEAD, USE the
Boolean && operator to combine two pair compares:

if(0 <= temp && temp <= 100)…

Big C++ by Cay Horstmann
Copyright © 2012 by John Wiley & Sons. All rights reserved

• Another common error, along the same lines, is to write

if (x && y > 0) ... // Error

• instead of

if (x > 0 && y > 0) ...

(x and y are ints)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Combining Multiple Relational Operators

Confusing && and || Conditions

• It is quite common that the individual conditions
are nicely set apart in a bulleted list, but with little
indication of how they should be combined.

• Our tax code is a good example of this.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• Consider these instructions for filing a tax return.
• You are of single filing status if any one of the following is true:

You were never married.
You were legally separated or divorced on the last day of the tax year.
You were widowed, and did not remarry.

• Is this an && or an || situation?

• Since the test passes if any one of the conditions is true,
you must combine the conditions with the or operator.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error – Confusing && and || Conditions

• Elsewhere, the same instructions:

• You may use the status of married filing jointly if all five of the following
conditions are true:

 Your spouse died less than two years ago and you did not remarry.
 You have a child whom you can claim as dependent.
 That child lived in your home for all of the tax year.
 You paid over half the cost of keeping up your home for this child.
 You filed a joint return with your spouse the year he or she died.

• && or an ||?

• Because all of the conditions must be true for the test to
pass, you must combine them with an &&.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Confusing && and || Conditions, continued

When does an expression become true or false?

expression && expression && expression && …
With &&’s, we can stop after finding the first false.

expression || expression || expression || …
With ||’s, we can stop after finding the first true.

This is called short circuit evaluation

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Short Circuit Evaluation

• Suppose we want to charge a higher shipping rate if we
don’t ship within the continental United States.

shipping_charge = 10.00;
if (!(country == "USA"
 && state != "AK"
 && state != "HI"))
 shipping_charge = 20.00;

This test is a little bit complicated.

 DeMorgan’s Law to the rescue!

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

DeMorgan’s Law

• DeMorgan’s Law allows us to rewrite complicated not/and/or
messes so that they are more clearly read.

shipping_charge = 10.00;
if (country != "USA"
 || state == "AK"
 || state == "HI")
 shipping_charge = 20.00;

Ah, much nicer.

But how did they do that?

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

DeMorgan’s Law, continued

• DeMorgan’s Law:

!(A && B) is the same as !A || !B
(change the && to || and negate all the terms)

!(A || B) is the same as !A && !B
(change the || to && and negate all the terms)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

DeMorgan’s Law Equivalencies

Simplification Examples: DeMorgan's, et al

• Simplify the following logical conditions:
int n; bool b; //definition of variables

n < 5 || n == 5

n <= 5 && n != 5

n <= 5 && n >= 5

n <= 5 || n >= 5

!(n <= 5)

!!b

b == true

b == false

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

