
Topic 8

1. The if statement
2. Comparing numbers and strings
3. Multiple alternatives
4. Nested branches
5. Problem solving: flowcharts
6. Problem solving: test cases
7. Boolean variables and operators
8. Application: input validation
9. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Input Validation with if Statements

• Let’s return to the elevator program to
consider input validation.

• Assume that the elevator panel has
buttons labeled 1 through 20 (but not
13!).

• Possible illegal inputs:
– The number 13
– Zero or a negative number
– A number larger than 20
– A value that is not a sequence of digits,

such as five
• In each of these cases, we will give an

error message and exit the program.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Input Validation with if Statements: Code

• It is simple to guard against an input of 13, or outside the range of floors:

if (floor == 13)
{
 cout << "Error: "
 << " There is no thirteenth floor."
 << endl;
 return 1;
}

if (floor <= 0 || floor > 20)
{
 cout << "Error: "
 << " The floor must be between 1 and 20."
 << endl;
 return 1;
} Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

Using return to exit the program upon Error

• The statement:
return 1;

immediately exits the main function and
therefore terminates the program.

• It is a convention to return the value 0 if the
program completes normally, and a non-zero
value when an error is encountered.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Input Validation: cin.fail()

• What if the user does not type a number in response to
the prompt?

‘F’ ‘o’ ‘u’ ‘r’ is not an integer response.

• When
cin >> floor;

is executed, and the user types in a bad input, the
integer variable floor is not set.

• Instead, the input stream cin is set to a failed state.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Example of cin.fail()

• You can call the fail() member function to test for that
failed state.

• So you can test for bad user input this way:

if (cin.fail())
{
 cout << "Error: Not an integer." << endl;
 return 1;
}

In a later chapter, we will explain how to clear the failed
state, so further input can be taken.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Input Validation with if Statements – Elevator Program
#include <iostream>
using namespace std;

int main()
{
 int floor;
 cout << "Floor: ";
 cin >> floor;

 // The following statements check various input errors
 if (cin.fail())
 {
 cout << "Error: Not an integer." << endl;
 return 1;
 }
 if (floor == 13)
 {
 cout << "Error: There is no thirteenth floor." << endl;
 return 1;
 }
 if (floor <= 0 || floor > 20)
 {
 cout << "Error: The floor must be between 1 and 20." << endl;
 return 1;
 }

ch03/elevator2.cpp

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Input Validation with if Statements – Elevator Program, Pt.2

 // Now we know that the input is valid
 int actual_floor;
 if (floor > 13)
 {
 actual_floor = floor - 1;
 }
 else
 {
 actual_floor = floor;
 }

 cout << "The elevator will travel to the actual
floor "

 << actual_floor << endl;

 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Topic 9

1. The if statement
2. Comparing numbers and strings
3. Multiple alternatives
4. Nested branches
5. Problem solving: flowcharts
6. Problem solving: test cases
7. Boolean variables and operators
8. Application: input validation
9. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary Part #1

The if() statement implements a decision.
• The if() statement allows a program to carry out different actions

depending on the nature of the data to be
 processed.

Implement comparisons of numbers and objects.
• Relational operators (< <= > >= == !=) are used to compare
 numbers and strings.
• Lexicographic order is used to compare strings.

– "car" is less than "cart"

Complex decisions require multiple if()…else statements.
• Multiple alternatives are required for decisions that have
 more than two cases.
• When using multiple if() statements, pay attention to the
 order of the conditions.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary Part #2

Implement decisions whose branches require further
decisions.
• When a decision statement is contained inside the branch of
 another decision statement, the statements are nested.
• Nested decisions are required for problems that have >=2

levels of decision making, such as the tax code.

Draw flowcharts to visualize control flow in a program.
• Flow charts are made up of elements for tasks, input/
 outputs, and decisions.
• Each branch of a decision can contain tasks and further
 decisions.
• Never point an arrow inside another branch.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary Part #3

Design test cases for your programs.
• Each branch of your program should be tested.
• Design test cases before implementing a program.

Use the bool data type to store and combine conditions
that can be true or false.
• C++ has two Boolean operators that combine conditions:
 && (and) and || (or).
• To invert a condition, use the ! (not) operator.
• The && and || operators use short-circuit evaluation:
 As soon as the value is determined, no further
 conditions are evaluated.
• Use De Morgan’s law to simplify combinations:

!(A && B) is the same as !A || !B
!(A || B) is the same as !A && !B

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary Part #4

Apply if() statements to detect whether input is valid.

• When reading a value, check that it is within the required
 range.

• Use the fail() function to test whether the input stream has
 failed:

if (cin.fail())
{
 cout << "Error: Not an integer." << endl;
 return 1;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

