
Topic 4

1. The while loop
2. Problem solving: hand-tracing
3. The for loop
4. The do loop
5. Processing input
6. Problem solving: storyboards
7. Common loop algorithms
8. Nested loops
9. Problem solving: solve a simpler problem first

10. Random numbers and simulations
11. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The while() loop’s condition test is the first thing
that occurs in its execution.

The do loop (or do-while loop) has its condition tested
only after at least one execution of the statements. The

test is at the bottom of the loop:

do
{
 statements
}
while (condition);

The do{ } while() Loop

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

This means that the do loop should be used only
when the statements must be executed before

there is any knowledge of the condition.

The do Loop

This also means that the do loop is the least used loop.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Code to keep asking a user for input until it satisfies a
condition, such as non-negative for applying the sqrt():

double value;
do
{
 cout << "Enter a number >= 0: ";
 cin >> value;
}
while (value < 0);

cout << "The square root is " << sqrt(value)
<< endl;

do{ } Loop Code: getting user input Repeatedly

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Flowcharts for the while Loop and the do Loop

Practice It: Example of do…while

• What output does this loop generate?

int j = 1;
do
{

int value = j * 2;
j++;
cout << value << ", ";

} while (j <= 5);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Topic 5

1. The while loop
2. Problem solving: hand-tracing
3. The for loop
4. The do loop
5. Processing input
6. Problem solving: storyboards
7. Common loop algorithms
8. Nested loops
9. Problem solving: solve a simpler problem first

10. Random numbers and simulations
11. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Processing Input – When and/or How to Stop?

• We need to know, when getting input from a user, when they
are done.

• One method is a sentinel (a value whose meaning is
STOP!)
– For example, when user is entering salary values, a negative number

would indicate the end (since legitimate salaries cannot be negative)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

#include <iostream>
using namespace std;

int main()
{
 double sum = 0;
 int count = 0;
 double salary = 0;
 // get all the inputs
 cout << "Enter salaries, -1 to finish: ";
 while (salary != -1)
 {
 cin >> salary;
 if (salary != –1)
 {
 sum = sum + salary;
 count++;
 }
 }

ch04/sentinel.cpp

Sentinel and a Salary Average Program (part 1)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 // process and display the average
 if (count > 0)
 {
 double average = sum / count;
 cout << "Average salary: " << average << endl;
 }
 else
 {
 cout << "No data" << endl;
 }

 return 0;
}

A program run:

Enter salaries, -1 to finish: 10 10 40 -1
Average salary: 20

The Salary Average Program (part 2)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• Sometimes it is easier to ask the user to “Hit Q to Quit”
instead of requiring the input of a sentinel value.

• In the previous chapter, we used cin.fail()
to test if the most recent input failed.

• Note that if you intend to take more input from the
keyboard after using failed input to end a loop,
you must reset the keyboard with cin.clear().

• Use a bool variable to keep track of the status, and use
cin.fail() to test for the input of a non-numeric
when expecting a number:

Using Failed Input for Processing

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

cout << "Enter values, Q to quit: ";
int value;
bool more = true;
while (more)
{
 cin >> value;
 if (cin.fail())
 {
 more = false;
 }
 else
 {
 // process value here
 }
}
cin.clear(); // reset if more input needed

Code Example: Testing cin.fail()

Those same programmers who dislike loops that are
controlled by a bool variable have another reason:
the actual test for loop termination is in the middle of
the loop. Again it is not really a top or bottom test.

This is called a loop-and-a-half.

The Loop and a Half Problem

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

If we test for a failed read, we can stop the loop
at that point:

while (true)
{
 cin >> value;
 if (cin.fail())

{ break; }
 // process value here
}
cin.clear() // reset if more input is to be taken

The break statement breaks out of the enclosing
loop, independent of the loop condition.

The Loop and a Half Problem and the break Statement

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Using Failed Input in the Loop Test

• Using a bool variable in this way is disliked by
many programmers.

Why?

• cin.fail is set when >> fails
It is not really a top or bottom test.

If only we could use the input itself to control
the loop – we can!

• An input >> operation that does not succeed
returns false, so it can be used in the while’s
test.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

To avoid the need for break and testing cin.fail, you
can use the input statement as the condition of the
while() loop:

cout << "Enter values, Q to quit: ";
while (cin >> value)
{
 // process value here
}
cin.clear();

Failed Input Loop Control – No cin.fail() needed

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Redirection of Input and Output to Files
• To avoid having to type all the input to your program

every time you re-test it, you can save the input in a text
file, and run your program with "input redirection" via the
< sign, as:

myprogram < myinput.txt
• This assumes you have compiled an ".exe" file from your

code called myprogram.exe, and have typed the above in a
command line window

• Likewise, to store the output from your program, you can
redirect it to a file instead of the screen by using >

myprogram > myoutput.txt
• And you can do both input and output from files:

myprogram < myinput.txt > myoutput.txt

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

