
Topic 9

1. The while loop
2. Problem solving: hand-tracing
3. The for loop
4. The do loop
5. Processing input
6. Problem solving: storyboards
7. Common loop algorithms
8. Nested loops
9. Problem solving: solve a simpler problem first

10. Random numbers and simulations
11. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Problem Solving: Solving a Simpler Problem First

When you face a complex task:
1. simplify the problem
2. solve the simpler problem first
3. Apply what you learned to build the complete,

complex task solution

This methodology helps you get started, and your
success on the simpler problem will help motivate
you to solve the harder one.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Solving a Simpler Problem

The Task:
Arrange pictures, aligned at the top edges, separated with
small gaps. Start a new row once the arrangement reaches a
certain width.

Solve these simpler problems to build towards a final solution:
1. Draw one picture.
2. Draw two pictures next to each other.
3. Draw two pictures with a gap between them.
4. Draw all pictures in a long row.
5. Draw a row of pictures until you run out of room, then put one
more picture in the next row.

See the textbook Section 4.9 for details!
Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

Topic 10

1. The while loop
2. Problem solving: hand-tracing
3. The for loop
4. The do loop
5. Processing input
6. Problem solving: storyboards
7. Common loop algorithms
8. Nested loops
9. Problem solving: solve a simpler problem first

10. Random numbers and simulations
11. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Random Numbers and Simulations

A simulation program models an activity in the real world
(or in an imaginary one)

Commonly used for:
1. predicting climate change
2. analyzing traffic
3. picking stocks
4. many other applications in science and business.

.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Simulations and the rand Function

 Since things in the real world happen at random times and
with random magnitudes within a certain range, we need to
generate random numbers for simulations.

<cstdlib> has a random number function: rand()

• rand()returns a random int between 0 and RAND_MAX
– implementation-dependent constant, typically the largest valid int

• Call rand() again, and you get a different number.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The rand Function is "Pseudorandom"

rand calculates a value from a long sequence of numbers
that don’t repeat for a long time.

But they do eventually repeat, thus the name
"pseudorandom numbers".

Furthermore, if you run the program again, you get the
exact same sequence of pseudorandom numbers.

To prevent the repeated sequences, use the following
nested function call at the top of your program once, to
"seed" the rand function with a unique value:

srand(time(0)); //time of day is the seed
// time() requires #include <ctime> header

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Simulation Example: Die Tosses

• Usually we want random numbers in a certain range (1 to 6 for dice)
• To get a random number value between a & b, use

– int r = rand() % (b - a + 1) + a;

• Complete die-toss program: sec10/dice.cpp
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main() {
srand(time(0)); //seed the generator
for (int i = 1; i <= 10; i++) // 10 tosses
{

int d1 = rand() % 6 + 1;
int d2 = rand() % 6 + 1;
cout << d1 << " " << d2 << endl;

}
cout << endl;
return 0;

}
Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved 8

Simulations: the Monte Carlo Method for π

• Named after the famous casino in Monte Carlo
• For finding approximate solutions to problems that

cannot be precisely solved
– by doing a bunch of trials and tallying averages

• Example for approximating the value of pi:
– Simulate shooting a dart into a square surrounding a circle of

radius 1.
• generate random x and y coordinates between –1 and 1
• The dart hits inside the circle if x2 + y2 ≤ 1
• Because our shots are entirely random, the ratio of hits / tries is

approximately equal to the ratio of the areas of the circle and the
square, that is, π/4.

• Therefore, our estimate for π is 4 × hits/tries.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved 9

Code for Monte Carlo Simulation of π
// sec10/montecarlo.cpp
// #includes not shown, insert here if you run this code
int main()
{

const int TRIES = 10000; //can increase TRIES for more
accuracy

srand(time(0));
int hits = 0;
for (int i = 1; i <= TRIES; i++)

 {
double r = rand() * 1.0 / RAND_MAX; // Between 0 and 1
double x = -1 + 2 * r; // x in range –1 to 1

 r = rand() * 1.0 / RAND_MAX; //rand value for y
double y = -1 + 2 * r;
if (x * x + y * y <= 1) //hit inside circle

{ hits++; }
}

 double pi_estimate = 4.0 * hits / TRIES;
 cout << "Estimate for pi: " << pi_estimate << endl;

return 0;
} Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved 10

Topic 11

1. The while loop
2. Problem solving: hand-tracing
3. The for loop
4. The do loop
5. Processing input
6. Problem solving: storyboards
7. Common loop algorithms
8. Nested loops
9. Problem solving: solve a simpler problem first

10. Random numbers and simulations
11. Chapter summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 1

• Explain the flow of execution in a loop.
– Loops execute a block of code repeatedly while a condition remains true.
– An off-by-one error is a common error when programming loops. Think through

simple test cases to avoid this type of error.

• Use the technique of hand-tracing to analyze the behavior of a
program.
– a simulation of code execution in which you step through instructions and track

the values of the variables.
– helps you understand how an unfamiliar algorithm works.
– can show errors in code or pseudocode. Use for loops for implementing counting

loops.

• Choose between the while loop and the do loop.
– The while loop is for loops that only should run if the condition is true at the

beginning
– The do loop is appropriate when the loop body must be executed at least once,

such as prompting the user to enter correct input.

• The for loop is used when a value runs from a starting point to an
ending point with a constant increment or decrement.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 2

• Implement loops that read sequences of input data.
– A sentinel value denotes the end of a data set, but it is not part of the data.
– You can use a Boolean variable to control a loop. Set the variable before entering

the loop, then set it to the opposite to leave the loop.
– Use input redirection to read input from a file. Use output redirection to capture

program output in a file.

• Use the technique of storyboarding for planning user interactions.
– A storyboard consists of annotated sketches for each step in an action sequence.
– Developing a storyboard helps you understand the inputs and outputs required for a

program.

• Know the most common loop algorithms.
– To compute an average, keep a total and a count of all values.
– To count values that fulfill a condition, check all values and increment a counter for

each match.
– To find a match, exit the loop when the match is found.
– To find the largest value, update the largest value seen so far whenever you see a

larger one.
– To compare adjacent inputs, store the preceding input in a variable.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved 13

Chapter Summary, Part 3

• Use nested loops to implement multiple levels of iteration.
– When the body of a loop contains another loop, the loops are nested.
– A typical use of nested loops is printing a table with rows and columns.

• Design programs that carry out complex tasks.
– To solve a complex problem, first solve a simpler task.
– Make a plan consisting of a series of tasks, each a simple extension of the

previous one, and ending with the original problem.

• Apply loops to the implementation of simulations.
– In a simulation, you use the computer to model an activity.
– You can introduce randomness by calling the random number generator

rand() after seeding the generator by calling srand(time(0))

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved 14

