
by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Five: Functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• To be able to implement functions
• To become familiar with the concept of parameter

passing
• To appreciate the importance of function comments
• To develop strategies for decomposing complex tasks

into simpler ones
• To be able to determine the scope of a variable
• To recognize when to use value and reference

parameters

Chapter Goals

Topic 1

1. Functions as black boxes
2. Implementing functions
3. Parameter passing
4. Return values
5. Functions without return values
6. Reusable functions
7. Stepwise refinement
8. Variable scope and globals
9. Reference parameters

10. Recursive functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

What Is a Function? Why Functions?

A function is a sequence of instructions with a name.

A function packages a computation into a form
that can be easily understood and reused.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Calling a Function

A programmer calls a function to have its instructions run.
int main()
{

 double z = pow(2, 3);
 ...
}

By using the expression: pow(2, 3)
main calls the pow function, asking it to compute 23.

The main function is temporarily suspended.
The instructions of the pow function execute and

compute the result.

The pow function returns its result back to main,
and the main function resumes execution.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Flowchart: Calling a Function

Execution flow
during a

function call

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Parameters

int main()
{

 double z = pow(2, 3);
 ...
}

When another function calls the pow function, it provides
“inputs”, such as the values 2 and 3 in the call pow(2, 3).

In order to avoid confusion with inputs that are provided by a
human user (cin >>), these values are called
parameter values.

The “output” that the pow function computes is called the
return value (not output using <<).

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

An Output Statement Does Not Return a Value

 output ≠ return

• The return statement does not display output
– Rather, it causes execution to resume in the calling program and

ends the called function.
– return may also pass a “value” back to the calling program

An output statement using << communicates
only with the user running the program.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Black Box Concept

• You can think of a function as a “black box”
where you can’t see what’s inside
but you know what it does.

• How did the pow
function do its job?

• You don’t need to know.

• You only need to know its specification.

Topic 2

1. Functions as black boxes
2. Implementing functions
3. Parameter passing
4. Return values
5. Functions without return values
6. Reusable functions
7. Stepwise refinement
8. Variable scope and globals
9. Reference parameters

10. Recursive functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Implementing Functions

Example: Calculate the volume of a cube

When writing this function, you need to:

• Pick a good, descriptive name for the function

• Give a type and a name for each parameter.
There will be one parameter for each piece
of information the function needs to do its job.

• Specify the type of the return type:

double cube_volume(double side_length)

• Then write the body of the function, as statements
enclosed in braces

{ }

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

cube_volume Function

The comments at the top are the standard Java format which you should
follow for any function you write (even in C++). They can be
processed by the Doxygen program to automatically generate
documentation of your function libraries.

/**
 Computes the volume of a cube.
 @param side_length the side length of the cube
 @return the volume
*/
double cube_volume(double side_length)
{
 double volume = side_length * side_length * side_length;
 return volume;
}

Test your Functions

You should always test the function.

You’ll write a main function to do this.

#include <iostream>
using namespace std;

/**
 Computes the volume of a cube.
 @param side_length the side length of the cube
 @return the volume
*/
double cube_volume(double side_length)
{
 double volume = side_length * side_length *

side_length;
 return volume;
}

ch05/cube.cpp

A Testbench Program (main)

int main()
{
 double result1 = cube_volume(2);
 double result2 = cube_volume(10);
 cout << "A cube with side length 2 has volume "
 << result1 << endl;
 cout << "A cube with side length 10 has volume "
 << result2 << endl;

 return 0;
}

Topic 3

1. Functions as black boxes
2. Implementing functions
3. Parameter passing
4. Return values
5. Functions without return values
6. Reusable functions
7. Stepwise refinement
8. Variable scope and globals
9. Reference parameters

10. Recursive functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

int hours = read_value_between(1, 12);

. . .

int read_value_between(int low, int high)

Parameter Passing

12

When a function is called, a parameter variable is created
for each value passed in.

Each parameter variable is initialized with the
corresponding parameter value from the call.

1

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Parameter Passing, cube_volume example

Here is a call to the cube_volume function:

double result1 = cube_volume(2);

Here is the function definition:
double cube_volume(double side_length)
{
 double volume = side_length * side_length * side_length;
 return volume;
}

We’ll keep up with their variables and parameters:
 result1
 side_length
 volume

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Parameter
Passing

In the calling function (main), the variable result1 is declared. When the
cube_volume function is called, the parameter variable side_length is
created & initialized with the value that was passed in the call (2).
After the return statement, the local variables side_length and volume
disappear from memory.

