
RECURSIVE FUNCTIONS

Recursive Functions

• A recursive function is a function that calls itself.
• Recursion may provide a simpler implementation

than a function that iterates (loops) to calculate an
answer
– By calling itself (and the new copy calling itself),

multiple iterations are automatically created and
handled by the computer hardware’s
function-call-stack mechanism

• For example, to print a text triangle:
[]
[][]
[][][]
[][][][]

Recursive Function Example
• We use a function defined as:
void print_triangle(int side_length)

• for this output:
[]
[][]
[][][]
[][][][]

The function call will be: print_triangle(4);

• This is the pseudocode of a recursive version, for an
arbitrary side length:

Recursive Function C++ Code
void print_triangle(int side_length)
{
 if (side_length < 1) { return; }
 print_triangle(side_length - 1);
 for (int i = 0; i < side_length; i++)
 {
 cout << "[]";
 }
 cout << endl;
}

A recursive function works by calling itself with
successively simpler input values.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Recursive Function Rules
Two requirements ensure that the recursion is
successful:

1. Every recursive call must simplify the task
in some way.

2. There must be special cases to handle the
simplest tasks directly.

The print_triangle() function calls itself
again with smaller and smaller side lengths.
Eventually the side length must reach 0, and the
function stops calling itself.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Tracing the Calls to the Recursive Function

How to Think Recursively

Pretend that “someone else” will do most of the heavy lifting.

Just focus on reducing the problem to a simpler one with a call
to the same function with smaller inputs.

You only need to figure out the last step: how to include this
solution with simpler inputs into a solution for the whole
problem.

Then include the exit case with no additional call, when the
input reaches the limit, so that the recursion eventually stops.

Example: Computing the Sum of the Digits of a Number:

Design a function int digit_sum(int x) that computes
the sum of the digits of an integer n.

 digit_sum(1729) would equal 1 + 7 + 2 + 9 = 19

How to Think Recursively

Step 1 Look for simpler input that can be solved by the same
task, and whose solution is related to the original task.

The key to finding a recursive solution is reducing the input to
a simpler input for the same problem.

Break the input into parts that can themselves be inputs to
the problem:

-- Save the last digit with: 1729 % 10 = 9

-- Remove the last digit and re-call with the remaining
 digits as input: 1729 / 10 = 172

The digit sum of 172 is directly related to the digit sum of
1729.

How to Think Recursively

Step 2 Combine solutions with simpler inputs into a solution of
the original problem.

When designing a recursive solution, do not worry about
multiple nested calls. Simply focus on reducing a problem to a
slightly simpler one.

In your mind, consider the solutions for the simpler inputs that
you have discovered in Step 1. Don’t worry how those
solutions are obtained. Simply have faith that the solutions are
readily available. Just say to yourself: These are simpler
inputs, so someone else will solve the problem for me.

How to Think Recursively

Step 2 continued:

In the case of the digit sum task, ask yourself how you can
obtain digit_sum(1729) if you know digit_sum(172).

You simply add the last digit (9), and you are done. How do
you get the last digit? As the remainder n % 10. The value
digit_sum(n) can therefore be obtained as:

digit_sum(n / 10) + n % 10

Don’t worry how digit_sum(n / 10) is computed. The
input is smaller, and therefore it just works.

Total that saved digit plus the return from the call.

Return the total.

How to Think Recursively

Step 3 Find solutions to the simplest inputs.

A recursive computation keeps simplifying its inputs. To make
sure that the recursion comes to a stop, you must deal with the
simplest inputs separately. Find solutions to the simplest
inputs (the stopping points). That is usually very easy.

Look at the simplest inputs for the digit_sum test:

 a number with a single digit OR a zero

A number with a single digit is its own digit sum, so you can
stop the recursion when n < 10, and return n in that case.

And you can simply terminate the recursion when n is zero.

How to Think Recursively

Step 4 Implement the solution by combining the simple cases
and the reduction step.

Now you are ready to implement the solution. Make separate
cases for the simple inputs that you considered in Step 3. If the
input isn’t one of the simplest cases, then implement the logic
you discovered in Step 2:

int digit_sum(int n) //Complete function
{

// Special case for terminating
// the recursion:
if (n == 0) { return 0; }
// General case:
return digit_sum(n / 10) + n % 10;

}

How to Think Recursively: the Code and a Trace
int digit_sum(int n)
{
 // Special case for terminating the recursion
 if (n == 0) { return 0; }
 // General case
 return digit_sum(n / 10) + n % 10;
}

• The call digit_sum(1729) calls digit_sum(172).
– The call digit_sum(172) calls digit_sum(17).

• The call digit_sum(17) calls digit_sum(1).
– The call digit_sum(1) calls digit_sum(0).

» The call digit_sum(0) returns 0.
– The call digit_sum(1) returns 1.

• The call digit_sum(17) returns 1+7 = 8
– The call digit_sum(172) returns 8+2 = 10

• The call digit_sum(1729) resumes and returns 10+9 = 19.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

SUMMARY

Understand recursive function calls and implement
recursive functions:

– A recursive computation solves a problem by using
the solution of the same problem with simpler inputs.

– For a recursion to terminate, there must be special
cases for the simplest inputs.

– The key to finding a recursive solution is reducing the
input to a simpler input for the same problem.

– When designing a recursive solution, do not worry
about multiple nested calls. Simply focus on reducing
a problem to a slightly simpler one.

