
Topic 4

1. Functions as black boxes
2. Implementing functions
3. Parameter passing
4. Return values
5. Functions without return values
6. Reusable functions
7. Stepwise refinement
8. Variable scope and globals
9. Reference parameters

10. Recursive functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Return Values

The return statement ends the function execution. This
behavior can be used to handle unusual cases.

What should we do if the side length is negative?
We choose to return a zero and not do any calculation:

double cube_volume(double side_length)
{
 if (side_length < 0) return 0;
 double volume = side_length * side_length * side_length;
 return volume;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Return Values: Shortcut

The return statement can return the value of any expression.

 Instead of saving the return value in a variable and returning the
variable, it is often possible to eliminate the variable and return
a more complex expression:

double cube_volume(double side_length)
{
 return side_length * side_length * side_length;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error – Missing Return Value

 Your function always needs to return something.

The code below calculates the cube only for a “reasonable”
positive input, but consider what is returned if the call
passes in a negative value!

You need to ensure all paths of execution include a return
statement. So the code below needs an else with its
own return after the if, to return perhaps a flag of -1.

double cube_volume(double side_length)
{
 if (side_length >= 0)
 {

 return side_length * side_length *
side_length; }

}

Function Declarations (Prototype Statements)
• It is a compile-time error to call a function that the compiler

does not know
– just like using an undefined variable.

• So define all functions before they are first used
– But sometimes that is not possible, such as when 2 functions call

each other
• Therefore, some programmers prefer to include a definition,

aka "prototype" for each function at the top of the program,
and write the complete function after main(){}

• A prototype is just the function header line followed by a
semicolon:
double cube_volume(double side_length);

• The variable names are optional, so you could also write it
as: double cube_volume(double);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Function Declarations – Complete Program
#include <iostream>
using namespace std;

// Declaration of cube_volume
double cube_volume(double side_length);

int main()
{
 double result1 = cube_volume(2); // Use of cube_volume
 double result2 = cube_volume(10);
 cout << "A cube with side length 2 has volume "<< result1<< endl;
 cout << "A cube with side length 10 has volume "<< result2<< endl;
 return 0;
}

// Definition of cube_volume
double cube_volume(double side_length)
{
 return side_length * side_length * side_length;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Steps to Implementing a Function

1. Describe what the function should do.
• EG: Compute the volume of a pyramid whose base is a square.

2. Determine the function’s “inputs”.
• EG: height, base side length

3. Determine the types of the parameters and return value.
• EG: double pyramid_volume(double height, double base_length)

4. Write pseudocode for obtaining the desired result.
volume = 1/3 x height x base length x base length

5. Implement the function body.
{ double base_area = base_length * base_length;
 return height * base_area / 3;
 }

6. Test your function
– Write a main() to call it multiple times, including boundary cases

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Complete Code for the Pyramid Function, with Testbench
#include <iostream>
using namespace std;
/** Computes the volume of a pyramid whose base is a square.
 @param height the height of the pyramid
 @param base_length length of one side of the pyramid’s base
 @return the volume of the pyramid
*/
double pyramid_volume(double height, double base_length)
{
 double base_area = base_length * base_length;
 return height * base_area / 3;
}

int main()
{
 cout << "Volume: " << pyramid_volume(9, 10) << endl;
 cout << "Expected: 300";
 cout << "Volume: " << pyramid_volume(0, 10) << endl;
 cout << "Expected: 0";
 return 0;
} Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

Topic 5

1. Functions as black boxes
2. Implementing functions
3. Parameter passing
4. Return values
5. Functions without return values
6. Reusable functions
7. Stepwise refinement
8. Variable scope and globals
9. Reference parameters

10. Recursive functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Functions Without Return Values

 Consider the task of writing a string
with the following format around it.

Any string could be used.

 For example, the string "Hello" would produce:

!Hello!

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Functions Without Return Values – The void Type

 This kind of function is called a void function.

void box_string(string str)

 Use a return type of void to indicate that a function
does not return a value.

 void functions are used to
 simply do a sequence of instructions

 – They do not return a value to the caller.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

void Type Example

void box_string(string str)
{
 int n = str.length();
 for (int i = 0; i < n + 2; i++){ cout << "-"; }
 cout << endl;
 cout << "!" << str << "!" << endl;
 for (int i = 0; i < n + 2; i++) { cout << "-"; }
 cout << endl;
}

 Note that this function doesn’t compute any value.

It performs some actions and then returns to the caller
 – without returning a value.
 (The return occurs at the end of the block.)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Calling void Functions

 Because there is no return value, you cannot use box_string
in an expression.

 You can make this call kind of call:

box_string("Hello");

 but not this kind:

result = box_string("Hello");
 // Error: box_string doesn’t
 // return a result.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Early Return from a void Function

 If you want to return from a void function before
reaching the end, you use a return statement
without a value. For example:

void box_string(string str)
{
 int n = str.length();

 if (n == 0)
 {

 return;
 }
 . . . // None of the statements after this
 // in the box_string function

// will be executed

// Return immediately

Topic 6

1. Functions as black boxes
2. Implementing functions
3. Parameter passing
4. Return values
5. Functions without return values
6. Reusable functions
7. Stepwise refinement
8. Variable scope and globals
9. Reference parameters

10. Recursive functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

 When you found you have written nearly identical code
multiple times,

you should write a function to replace the redundant code.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Repeated Code Example

Consider how similar the following statements are:

int hours;
do
{
 cout << "Enter a value between 0 and 23:";
 cin >> hours;
} while (hours < 0 || hours > 23);

int minutes;
do
{
 cout << "Enter a value between 0 and 59: ";
 cin >> minutes;
} while (minutes < 0 || minutes > 59);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Turn Repeated Code into Functions

Move the common behavior into one function.

int read_int_up_to(int high)
{
 int input;
 do
 {
 cout << "Enter a value between "
 << "0 and " << high << ": ";
 cin >> input;
 } while (input < 0 || input > high);
 return input;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Function Calls That Replace Repeated Code

Then we can use this function as many times as we need:

int hours = read_int_up_to(23);
int minutes = read_int_up_to(59);

Note how the code has become much easier to understand.

And we are not rewriting code

– code reuse!

