
Topic 7

1. Functions as black boxes
2. Implementing functions
3. Parameter passing
4. Return values
5. Functions without return values
6. Reusable functions
7. Stepwise refinement
8. Variable scope and globals
9. Reference parameters

10. Recursive functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement

• One of the most powerful strategies for problem solving
is the process of stepwise refinement.

• To solve a difficult task, break it down into simpler tasks.

• Then keep breaking down the simpler tasks into even
simpler ones, until you are left with tasks that you know
how to solve.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement Example: Coffee Making

 The “make coffee” problem can be broken into:
if we have instant coffee, we can make that

but if not, we can brew coffee
(maybe these will have parts)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement #2

 Making instant coffee breaks into:
1. Boil Water

2. Mix (stir if you wish)
(Do these have sub-problems?)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement #3

 Boiling water appears
not to be so easy.

Many steps,
but none have sub-steps.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement – The Complete Process Shown

 To write the
“get coffee” program,
 write functions
for each sub-problem.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement Example #2: Paycheck Printing

We will write a program to take a dollar amount as a int
input and produce the text equivalent of the $$ amount,

to print the English amount line on a check.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Sub Problem #1: int to text 0…9

 Of course we will write a function to solve this sub-problem.

/**
Turns a number into its English name.
@param number a positive integer < 1,000
@return the name of number (e.g., "two hundred seventy four")
*/
string int_name(int number)

 Notice that we started by writing only the comment and the
first line of the function.

Also notice that the constraint of < $1,000 is announced in
the comment.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement

If the number is between 1 and 9, we need to compute
"one" … "nine".

In fact, we need the same computation again for the hundreds
(“two” hundred).

Any time you need to do something more than once, turn that
task into a function:

/**
 Turns a digit into its English name.
 @param digit an integer between 1 and 9
 @return the name of digit (“one”...nine”)
*/
string digit_name(int digit)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement: Another Function for Teens

 Numbers between 10 and 19 are special cases.

Let’s have a separate function teen_name that
converts them into strings "eleven", "twelve", "thirteen",
and so on:

/**
Turns a number between 10 and 19 into its
English name.

@param number an integer between 10 and 19
@return the name of the number (“ten” ...
“nineteen”)

*/
string teen_name(int number)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement: Add a Function for Tens

 Next, suppose that the number is between 20 and 99.
 Then we show the tens as "twenty", "thirty", …, "ninety".
 For simplicity and consistency, put that computation into
 a separate function:

 /**
 Gives the name of the tens part of a number between 20 and 99.
 @param number an integer between 20 and 99
 @return the name of the tens part of the number ("twenty"..."ninety")

 */

 string tens_name(int number))

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement: Hundreds

• Now suppose the number is at least 20 and at most 99.
– If the number is evenly divisible by 10, we use
tens_name, and we are done.

– Otherwise, we print the tens with tens_name and the
ones with digit_name.

• If the number is between 100 and 999,
– then we show a digit, the word "hundred", and the

remainder as described previously.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement – The Pseudocode

part = number (The part that still needs to be converted)
name = "" (The name of the number starts as the empty string)

If part >= 100
 name = name of hundreds in part + " hundred"
 Remove hundreds from part

If part >= 20
 Append tens_name(part) to name
 Remove tens from part.
Else if part >= 10
 Append teen_name(part) to name
 part = 0

If (part > 0)
 Append digit_name(part) to name.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement – Analyzing the Pseudocode

• This pseudocode has a number of important improvements
over the descriptions and comments.
– It shows how to arrange the order of the tests, starting

with the comparisons against the larger numbers
– It shows how the smaller number is subsequently

processed in further if statements.

• On the other hand, this pseudocode is vague about:
– The actual conversion of the pieces,

just referring to “name of hundreds” and the like.
– Spaces—it would produce strings with no spaces:

 “twohundredseventyfour”

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement – Pseudocode to C++

Now for the real code.
The last three cases are easy so let’s start with them:

if (part >= 20)
{
 name = name + " " + tens_name(part);
 part = part % 10;
}
else if (part >= 10)
{
 name = name + " " + teen_name(part);
 part = 0;
}
if (part > 0)
{
 name = name + " " + digit_name(part);
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stepwise Refinement – Pseudocode to C++ (part 2)

Finally, the case of numbers between 100 and 999.
Because part < 1000, part / 100 is a single digit,
and we obtain its name by calling digit_name.
Then we add the “hundred” suffix:

if (part >= 100)
{
 name = digit_name(part / 100) + " hundred";
 part = part % 100;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Complete Code for the Check Printer (part 1)
// ch05/intname.cpp
#include <iostream>
#include <string>
using namespace std;
/**
 Turns a digit into its English name.
 @param digit an integer between 1 and 9
 @return the name of digit ("one" ... "nine")
*/
string digit_name(int digit)
{
 if (digit == 1) return "one";
 if (digit == 2) return "two";
 if (digit == 3) return "three";
 if (digit == 4) return "four";
 if (digit == 5) return "five";
 if (digit == 6) return "six";
 if (digit == 7) return "seven";
 if (digit == 8) return "eight";
 if (digit == 9) return "nine";
 return "";
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Complete Code for the Check Printer (part 2)
/**
 Turns a number between 10 and 19 into its English name.
 @param number an integer between 10 and 19
 @return the name of the given number ("ten" ... "nineteen")
*/
string teens_name(int number)
{
 if (number == 10) return "ten";
 if (number == 11) return "eleven";
 if (number == 12) return "twelve";
 if (number == 13) return "thirteen";
 if (number == 14) return "fourteen";
 if (number == 15) return "fifteen";
 if (number == 16) return "sixteen";
 if (number == 17) return "seventeen";
 if (number == 18) return "eighteen";
 if (number == 19) return "nineteen";
 return "";
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Complete Code for the Check Printer (part 3)
/**
 Gives the name of the tens part of a number between 20 and

99.
 @param number an integer between 20 and 99
 @return the name of the tens part of the number ("twenty"

... "ninety")
*/
string tens_name(int number)
{
 if (number >= 90) return "ninety";
 if (number >= 80) return "eighty";
 if (number >= 70) return "seventy";
 if (number >= 60) return "sixty";
 if (number >= 50) return "fifty";
 if (number >= 40) return "forty";
 if (number >= 30) return "thirty";
 if (number >= 20) return "twenty";
 return "";
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Complete Code for the Check Printer (part 4)
/**
 Turns a number into its English name.
 @param number a positive integer < 1,000
 @return the name of the number (e.g. "two hundred seventy

four")
*/
string int_name(int number)
{
 int part = number; // The part that still needs to be

converted
 string name; // The return value

 if (part >= 100)
 {
 name = digit_name(part / 100) + " hundred";
 part = part % 100;
 }
 if (part >= 20)
 {
 name = name + " " + tens_name(part);
 part = part % 10;
 }

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Complete Code for the Check Printer (part 5)
 else if (part >= 10)
 {
 name = name + " " + teens_name(part);
 part = 0;
 }

 if (part > 0)
 {
 name = name + " " + digit_name(part);
 }

 return name;
}

int main()
{
 cout << "Please enter a positive integer: ";
 int input;
 cin >> input;
 cout << int_name(input) << endl;
 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Good Design – Keep Functions Short

• There is a certain cost for writing a function:
– You need to design, code, and test the function.
– The function needs to be documented.
– You need to spend some effort to make the function

reusable rather than tied to a specific context.
– So it’s tempting to write long functions to minimize their

number and the overhead

• BUT as a rule of thumb, a function that is too long to fit on a
single screen should be broken up.
– into other functions
– Long functions are hard to understand and to debug

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Tracing Functions

When you design a complex set of functions, it is a
good idea to carry out a manual walkthrough before
entrusting your program to the computer.

This process is called tracing your code.

You should trace each of your functions separately.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Tracing Functions: Example with int_name function

Here is the call: … int_name(416) …
string int_name(int number)
{
 int part = number; // The part that still needs
 // to be converted
 string name; // The return value, initially ""

Take an index card and write the name of the function and
the names and values of the parameter variables, plus a
table to show variable values at each step:

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Tracing Functions: Midway Through

 name has changed to
 name + " " + digit_name(part / 100) + "hundred“

 which is the string "four hundred",

 part has changed to part % 100, or 16.

 Cross out the old values and write the new ones.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Tracing Functions: Add a new Card for Each Function Called

If digit_name’s parameter had been complicated,
you would have started another sheet of paper
to trace that function call.

Your work table will probably be covered with
sheets of paper (or envelopes) by the time you
are done tracing!

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Tracing Functions: An Error Found

Why is part set to 0?

if (part >= 20)…
else if (part >= 10) {

 name = name + " " + teens_name(part);
 part = 0;
 }

 if (part > 0)
 {
 name = name + " " + digit_name(part);
 }

After the if-else statement ends, name is complete.

The test in the following if statement needs to be
“fixed” so that part of the code will not be executed

 - nothing should be added to name.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stubs

• When writing a larger program, don’t try to implement
and test all functions at once.

• Temporarily implement the functions yet to be written as
trivial “stubs”
– A stub is a function that returns a simple value that is sufficient

for testing another function.
– It might also write a debug message on the screen to help you

see the order of execution.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stub Examples

Here are examples of stub functions.
/**
 Turns a digit into its English name.
 @param digit an integer between 1 and 9
 @return the name of digit (“one” ... “nine”)
*/
string digit_name(int digit)
{
 return "mumble";
}

/**
 Gives the name of the tens part of a number between 20 and 99.
 @param number an integer between 20 and 99
 @return the tens name of the number (“twenty” ... “ninety”)
*/
string tens_name(int number)
{
 return "mumblety";
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Stub Execution

If you combine these stubs with the completely written
int_name function and run the program testing with
the value 274, this will the result:

Please enter a positive integer: 274
mumble hundred mumblety mumble

which shows that the basic logic of the int_name function
is working correctly.

Now that you have tested int_name, you would
“unstubify” another stub function, then another...

