
Topic 8

1. Functions as black boxes
2. Implementing functions
3. Parameter passing
4. Return values
5. Functions without return values
6. Reusable functions
7. Stepwise refinement
8. Variable scope and globals
9. Reference parameters

10. Recursive functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Scope

You can only have one main function
but you can have as many variables and parameters

spread amongst as many functions as you need.

Can different variables have the same name in different
functions?

YES! (though it is a bad practice to intentionally do so)

How does the compiler keep track of variables of the same
name?

By analyzing their SCOPE

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Scope is Limited to the Code Block

 A variable or parameter that is defined within a function or
other statement is visible from the point at which it is

defined until the end of the block.
Ie, from the first appearance of the variable until the next

closing curly brace (or the end of the statement).

This area is called the scope of the variable.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Scopes Don’t Overlap

 The scope of a variable is the part of
the program in which it is visible.

Because scopes do not overlap,
a name in one scope cannot

conflict with any name in another scope.

A name in one scope is “invisible”
in another scope

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Scope Example
double cube_volume(double side_len)
{
 double volume = side_len * side_len * side_len;
 return volume; //this volume is local to this function
// and it disappears at the completion of the return
}
int main()
{
 double volume = cube_volume(2);
 cout << volume << endl;
 return 0;
}

Each volume variable is defined in a separate function.
Coincidentally in this code, the 2 variables have the same value

(8), but that is not usually the case with variables of the same
name in different scopes.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Scope and Blocks

Variables defined inside a block are local to that block,
and have no meaning outside the {} of the block.

Example:
for(int i=0; i<5; i++)

cout << i << endl;
// “i“ exists only until the closing ; of
the for() statement

A function names a block.
Recall that variables and parameters do not exist after

the function is over—because they are local to that
block.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Scope Errors

It is not legal to define two variables or
parameters with the same name in the same scope.

For example,

int test(double volume)
{
 double volume = cube_volume(2); //ERROR
 double volume = cube_volume(10); //ERROR
// ERROR: cannot define another volume variable
// ERROR: or variable with same name as input
// parameter in the same scope
...
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Variable Scope – Nested Blocks

However, you can define another variable
with the same name in a nested block.

double withdraw(double balance, double amount)
{
 if (...)
 {
 double amount = 10;

 ...
 }
 ...
}

a variable named amount local to the if’s block
 – and a parameter variable named amount.

But this is a confusing construct, and is discouraged.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Global Variables

• A global variable is one that is defined outside of any
function, and thus is visible to all functions

All the variables we have used so far are called “local”

•Generally, global variables are not a good idea

•Because they are seen by all functions, determining
which functions are interacting by changing them
becomes tricky when debugging

•Some situations require global variables, such as a
shared time-of-day clock in an embedded control system

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Global Variable Example

int balance = 10000; // A global variable

void withdraw(double amount)
{
 if (balance >= amount)
 {
 balance = balance - amount;
 }
}

int main()
{
 withdraw(1000);
 cout << balance << endl;
 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Global Variable Pitfalls

 In the previous program there is only one
function that updates the balance variable.

 But there could be many, many, many
functions that might need to update
balance each written by any one of
a huge number of programmers in

a large company.

Then we would have a problem.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Avoiding the Global Variable

//A better way to code the previous banking example,
// eliminating the global variable

// Function returns new balance after a withdrawal
double withdraw(double balance, double amount)
{
 return balance - amount;
 //negative balance will indicate overdraft
}

int main()
{
 int balance = 10000; // local variable

 balance = withdraw(balance, 1000);
 cout << “Balance = “ << balance << endl;
 return 0;
}

Self-Check: Global Variable Example #2

What does this program print? (Answer: 4 16)

#include <iostream>
using namespace std;

int p;
int contribute(int f)
{
 if (f != 0) { p = p * f; }
 return p;
}
int main()
{
 int n = 2;
 p = n;
 n = contribute(n);
 contribute(p);
 cout << n << " " << p << endl;
 return 0;
}

As you can see, the global variable p makes it difficult to follow
the program flow. Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

