
Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Arrays

Slides by Evan Gallagher

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Using Arrays

• Arrays are a low-level construct

• The array is

– less convenient

– but sometimes required

• for efficiency

• for compatibility with older software

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Using Arrays

In arrays, the stored data is of

the same type

Think of a sequence of data:

 32 54 67.5 29 35 80 115 44.5 100 65

 (all of the same type, of course)
 (storable as doubles)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Example Task with Several Numbers

 32 54 67.5 29 35 80 115 44.5 100 65

Which is the largest in this set?
(You must look at every single value to decide.)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Problem: Each Number as a Separate Variable Name

 32 54 67.5 29 35 80 115 44.5 100 65

 So you would create a variable for each,
of course!

int n1, n2, n3, n4, n5, n6, n7, n8, n9, n10;

Then what ???

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Using Arrays

You can easily visit each element in an array,
checking and updating a variable holding the current maximum

Arrays store data with a single name and a subscript, like in math
vectors.

We can declare an array as:
 double values[10];

An “array of double”

Ten elements of double type
stored under one name as
an array.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Defining Arrays with Initialization

When you define an array, you can specify the initial values:

 double values[] = { 32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65 };

32.0

54.0

67.5

29.0

35.0

80.0

115.0

44.5

100.0

65.0

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Array Syntax Examples: Table 1

int numbers[10]; An array of ten integers.
const int SIZE = 10;
int numbers[SIZE];

It is a good idea to use a named constant for the
size.

int size = 10;
int numbers[size];

Caution: the size must be a constant. This
code will not work with all compilers.

int squares[5] =
{ 0, 1, 4, 9, 16 }; An array of five integers, with initial values.

int squares[] =
{ 0, 1, 4, 9, 16 };

You can omit the array size if you supply initial
values. The size is set to the number of initial
values.

int squares[5] =
{ 0, 1, 4 };

If you supply fewer initial values than the size,
the remaining values are set to 0. This array
contains 0, 1, 4, 0, 0.

string names[3]; An array of three strings.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Accessing an Array Element

An array element can be used like any variable.

To access an array element, you use the notation:

values[i]

where i is the index.

The first element in the array is at index i=0, NOT at i=1.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

32.0

54.0

67.5

29.0

35.0

80.0

115.0

44.5

100.0

65.0

Array Element Index

To access the element at index 4 using this notation:
values[4] 4 is the index.

 double values[10];
...
cout << values[4] << endl;

 The output will be 35.0.
 (Again because the first subscript
is 0, the output for index=4 is the 5th

element)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Array Element Index for Writing

The same notation can be used to change the element.

 values[4] = 17.7;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Array Element Indices are between 0 and Length-1

That is, the legal elements for the values array are:

values[0], the first element
values[1], the second element
values[2], the third element
values[3], the fourth element
values[4], the fifth element
...
values[9], the tenth and last legal element
 recall: double values[10];

The index must be >= 0 and <= 9.
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 is 10 numbers.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Capacity

How many elements, at most, can an array hold?

We call this quantity the capacity.
For example, we may decide a problem usually needs ten or 11

values, but never more than 100.
We would set the capacity with a const:

const int CAPACITY = 100;
double values[CAPACITY];

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Current Size

 But how many actual elements are

 there in a partially filled array?

We will use a companion variable to hold that amount:

Suppose we add four elements to the array?

const int CAPACITY = 100;
double values[CAPACITY];

int current_size = 0; // array is empty

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Companion Variable for Size

 const int CAPACITY = 100;

double values[CAPACITY];

current_size = 4; // array now holds 4

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Partially-Filling an Array – Code Loop

The following loop fills an array with user input.
Each time the size of the array changes we update the size variable:

const int CAPACITY = 100;
double values[CAPACITY];

int size = 0;
double input;
while (cin >> input)
{
 if (size < CAPACITY)
 {
 values[size] = x;
 size++;
 }
}

When the loop ends, the companion variable size has the number
of elements in the array.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Output

How would you print the elements in a partially filled array?

By using the current_size companion variable.

for (int i = 0; i < current_size; i++)
{
 cout << values[i] << endl;
}

When i is 0, values[i] is values[0], the first element

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

To visit all elements of an array, use a for loop, whose
counter is the array index:
const int CAPACITY =10;
for (int i = 0; i < CAPACITY; i++)
{
 cout << values[9] << endl;
}
When i is 0, values[i] is values[0], the first element.
When i is 1, values[i] is values[1], the second element.

When i is 2, values[i] is values[2], the third element.
…
When i is 9, values[i] is values[9],

 the tenth and last legal element.

Using Arrays – Visiting All Elements

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Illegally Accessing an Array Element – Bounds Error

A bounds error occurs when you access

an element outside the legal set of indices:

cout << values[10]; //error! 9 is the last valid index

Doing this can corrupt data
or cause your program to terminate.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Use Arrays for Sequences of Related Values

Recall that the type of every element must be the same.
That implies that the “meaning” of each stored value is the same.

int scores[NUMBER_OF_SCORES];

But an array could be used improperly:
double personal_data[3];
personal_data[0] = age;
personal_data[1] = bank_account;
personal_data[2] = shoe_size;

Clearly these doubles do not have the same meaning!

