
Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Six: Arrays and Vectors

Slides by Evan Gallagher

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• To become familiar with using arrays to collect values

• To learn about common algorithms for processing
arrays

• To write functions that receive and return arrays

• To be able to use two-dimensional arrays

Chapter Goals

Topic 2

1. Arrays
2. Common array algorithms
3. Arrays / functions
4. Problem solving: adapting algorithms
5. Problem solving: discovering algorithms
6. 2D arrays
7. Vectors
8. Chapter Summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Array and Vector Algorithms

 There are many typical things that are
done with sequences of values.

 There many common algorithms
for processing values stored
in both arrays and vectors.

 (We will get to vectors a bit later
but the algorithms are the same)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Filling

This loop fills an array with zeros:

for (int i = 0; i < size; i++)
{
 values[i] = 0;
}

To fill an array with squares (0, 1, 4, 9, 16, ...).

for (int i = 0; i < size; i++)
{
 squares[i] = i * i;
}

Self-Check Exercise

• Using a for loop, fill an array a with 0, 1, 2, 0, 1, 2, 0, 1,
2, 0, 1, 2, 0, 1, 2, 0, 1, 2
– Hint: you’ll need to increment the loop index by 3, not by 1

for (; ;)
{

a[] = ;
a[] = ;
a[] = ;

}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

Consider these two arrays:

int squares[5] = { 0, 1, 4, 9, 16 };
int lucky_numbers[5];

How can we copy the values from squares
to lucky_numbers?

Let’s try what seems right and easy…
squares = lucky_numbers; …and
wrong!

 You cannot assign arrays!
The compiler will report a syntax error.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying Requires a Loop

/* you must copy each element individually
using a loop! */

int squares[5] = { 0, 1, 4, 9, 16 };
int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Sum and Average Value

You have already seen the algorithm
for computing the sum and average of a set of data.
The algorithm is the same when the data is stored in an array.

double total = 0;
for (int i = 0; i < size; i++)
{
 total = total + values[i];
}

The average is just arithmetic:

double average = total / size;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Maximum

To compute the largest value in an array, keep a variable
that stores the largest element that you have encountered,
and update it when you find a larger one.

double largest = values[0];
for (int i = 1; i < size; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Minimum

For the minimum, we just reverse the comparison.

double smallest = values[0];
for (int i = 1; i < size; i++)
{
 if (values[i] < smallest)
 {
 smallest = values[i];
 }
}

These algorithms require that the array
contain at least one element.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Element Separators

When you display the elements of an array, you may want
to separate them, often with commas or vertical lines, like
this:

1 | 4 | 9 | 16 | 25

Note that there is one fewer separator than there are
numbers.

 To print five elements, you need four separators.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Element Separator Code

Print the separator before each element
except the initial one (with index 0):

1 | 4 | 9 | 16 | 25

for (int i = 0; i < size of values; i++)
{
 if (i > 0)
 {
 cout << " | ";
 }
 cout << values[i];
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Linear Search

Find the position of a certain value, say 100, in an array:
int pos = 0;
bool found = false;
while (pos < size && !found)
{
 if (values[pos] == 100) // looking for 100
 {
 found = true;
 }
 else
 {
 pos++;
 }
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Removing an Element, Unordered

To remove the element at index i:
If the elements in the array are not in any particular order, simply

overwrite the element to be removed with the last element, then shrink
the size by 1.

values[pos] = values[current_size - 1];
 current_size--;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Removing an Element, Ordered

The situation is more complex if the order of the elements
matters.

Then you must move all elements following the element to
be removed “down” (to a lower index), and then shrink the

size of the array by 1 thus removing the last element.

for (int i = pos + 1; i < current_size; i++)
{
 values[i - 1] = values[i];
}
current_size--;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Removing an Element, Ordered

//removing the element at index “pos”
for (int i = pos + 1; i < current_size; i++)
{
 values[i - 1] = values[i];
}
current_size--;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Inserting an Element Unordered

If the order of the elements does not matter, in a partially
filled array (which is the only kind you can insert into),

you can simply insert a new element at the end.
if (current_size < CAPACITY)
{
 current_size++;
 values[current_size - 1] = new_element;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Inserting an Element Ordered

If the order of the elements does matter, it is a bit
harder.

To insert an element at position i, all elements from that
location to the end of the vector must be moved “out” to
higher indices.
After that, insert the new element at the now vacant

position [i].

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Inserting an Element Ordered: Code

if (current_size + 1 < CAPACITY)
{
 current_size++;
 for (int i = current_size - 1; i > pos; i--)
 {
 values[i + 1] = values[i];
 }
 values[pos] = new_element;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Swapping Elements

Suppose we need to swap the values at
positions i and j in the array.
Will this work?

values[i] = values[j];
values[j] = values[i];

Look closely!
In the first line you lost – forever! – the value at i,

replacing it with the value at j.

Then what?
Put j’s value back into j in the second line?

We end up with 2 copies of [j], and have lost the [i]

Code for Swapping Array Elements

//save the first element in
// a temporary variable
// before overwriting the 1st

double temp = values[i];
values[i] = values[j];
values[j] = temp;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Reading Input

If the know how many input values the user will supply,
you can store them directly into the array:

double values[NUMBER_OF_INPUTS];
for (i = 0; i < NUMBER_OF_INPUTS; i++)
{

cin >> values[i];
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Reading Unknown # of Inputs

When there will be an arbitrary number of inputs, things get more
complicated. But not hopeless.

Add values to the end of the array until all inputs have been made.
Again, current_size will have the number of inputs.

double values[CAPACITY];
int current_size = 0;
double input;
while (cin >> input) //cin returns true until

 // invalid (non-numeric) char encountered
{

if (current_size < CAPACITY)
{
 values[current_size] = input;
 current_size++;
}

}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Algorithms – Overflow Reading Input

 Unfortunately it’s even more complicated:

Once the array is full, we allow the user to keep entering!

Because we can’t change the size
of an array after it has been created,

we’ll just have to give up for now.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Complete Program to Read Inputs and Report the Maximum
#include <iostream>
using namespace std;

int main() //read inputs, print out largest
{
 const int CAPACITY = 1000;
 double values[CAPACITY];
 int current_size = 0;

 cout << "Please enter values, Q to quit:" <<
endl;

 double input;
 while (cin >> input)
 {
 if (current_size < CAPACITY)
 {
 values[current_size] = input;
 current_size++;
 }
 }

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Complete Program to Read Inputs, part 2

 double largest = values[0];
 for (int i = 1; i < current_size; i++)
 {
 if (values[i] > largest)
 {
 largest = values[i];
 }
 }

 for (int i = 0; i < current_size; i++)
 { //print each element, highlighting largest
 cout << values[i];
 if (values[i] == largest)
 {
 cout << " <== largest value";
 }
 cout << endl;
 }
 return 0;
}

A Sorting Algorithm: Selection Sort
The following is an inefficient but simple sorting algorithm. It divides the
array into a sorted section on the left and unsorted on the right, moving
elements successively from right to left starting with the smallest element
remaining in the unsorted section. Here is the selection sort:
for (int unsorted = 0; unsorted < size - 1; unsorted++)
{
 // Find the position of the minimum
 int min_pos = unsorted;
 for (int i = unsorted + 1; i < size; i++)
 {
 if (values[i] < values[min_pos]) { min_pos = i; }
 }
 // Swap the minimum into the sorted area
 if (min_pos != unsorted)
 {
 double temp = values[min_pos];
 values[min_pos] = values[unsorted];
 values[unsorted] = temp;
 }
}
In a later chapter we’ll cover sorting algorithms in detail.

Searching Algorithms: Binary Search
• There is a much faster way to search a sorted array than the linear

search shown previously
• "Binary search" repeatedly partitions the array in half, then ¼, then 1/8,

etc…to find a match
bool found = false;
int low = 0, high = size - 1;
int pos = 0;
while (low <= high && !found)
{

pos = (low + high) / 2; // Midpoint of the subarray
if (values[pos] == searched_value)
{ found = true; }
else if (values[pos] < searched_value)

{ low = pos + 1; } // Look in second half
else { high = pos - 1; } // Look in first half

}
if (found)

{ cout << "Found at position " << pos; }

