
Topic 4

1. Arrays
2. Common array algorithms
3. Arrays / functions
4. Problem solving: adapting algorithms
5. Problem solving: discovering algorithms
6. 2D arrays
7. Vectors
8. Chapter Summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Problem Solving: Adapting Algorithms

Recall that you saw quite a few
 (too many?)
 algorithms for working with arrays.

Suppose you need to solve a problem that
 does not exactly fit any of those?

What to do?
No, “give up” is not an option!

You can adapt algorithms you already know to produce a
new algorithm.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Problem Example: Summing Quiz Scores

Consider this problem:

Compute the final quiz score from a set of quiz scores,

but be nice:
drop the lowest score.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Adapting Algorithms: Three that We Know
Calculate the sum:

 double total = 0;
for (int i = 0; i < size of values; i++)
{
 total = total + values[i];
}

Find the minimum:
 double smallest = values[0];

for (int i = 1; i < size of values; i++)
{
 if (values[i] < smallest)
 {
 smallest = values[i];
 }
}

Remove an element:
 values[pos] = values[current_size - 1];

current_size--;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Adapting Algorithms: A Glitch in Combining Those Three

 values[pos] = values[current_size - 1];
current_size--;

This algorithm removes by knowing the position of the
element to remove… …but…
 double smallest = values[0];
for (int i = 1; i < size of values; i++)
{
 if (values[i] < smallest)
 {
 smallest = values[i];
 }
}

That’s not the position of the smallest – it IS the smallest.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Algorithm to Find the Position
 Here’s another algorithm I know that does find the position:

int pos = 0;
bool found = false;
while (pos < size of values && !found)
{
 if (values[pos] == 100) // looking for 100
 {
 found = true;
 }
 else
 {
 pos++;
 }
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Adapting the Minimum Algorithm to Report the Position

Combining the minimum value algorithm with the
position-finder:

 int smallest_position = 0;
for (int i = 1; i < size of values; i++)
{
 if (values[i] < values[smallest_position])
 {
 smallest_position = i;
 }
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Final Answer for Adapting Algorithms

Aha! Here is the algorithm:

1. Find the position of the minimum
2. Remove it from the array
3. Calculate the sum

 (will be without the lowest score)
4. Calculate the final score

Topic 5

1. Arrays
2. Common array algorithms
3. Arrays / functions
4. Problem solving: adapting algorithms
5. Problem solving: discovering algorithms
6. 2D arrays
7. Vectors
8. Chapter Summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

What if you come across a problem
for which you cannot find an algorithm you know

and you cannot figure out how to adapt any algorithms?

you can use a technique called:

MANIPULATING PHYSICAL OBJECTS

 better know as:

 playing around with things.

Discovering Algorithms by Manipulating Physical Objects

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Here is a problem:

 You are given an array whose size is an even number.
You are to switch the first and the second half.

 Before:

 After:

Manipulating Physical Objects: Example Problem

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

We’ll use 8 coins as a model for our 8-elements of the array

We can swap coins like we’d swap array elements:

Manipulating Physical Objects: Coins

Swapping Coins: the Algorithm

• We find that by swapping the
– 0st and 4th coins, and
– 1nd and 5th
– 2rd and 6th

– And 3rd and 7th
– We have swapped the first

half of the 8 with the last

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Translating the Manipulations to Code

Pseudocode:
i = 0
j = size / 2
While i < size / 2
 Swap elements at positions i and j.
 i++
 j++

Translating to C++ is left as a Programming
Exercise at the end of the chapter

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Self Check: Practice Manipulating Objects
Using physical objects such as coins to represent array elements,
determine the purpose of the function below:
void transform(int array[], int length)
{
 int position = 0;
 for (int k = 1; k < length; k++)
 {
 if (array[k] < array[position])
 {
 position = k;
 }
 }
 int temp = array[position];
 while (position > 0)
 {
 array[position] = array[position – 1];
 position--;
 }
 array[0] = temp;
}
//ANSWER: copies the smallest value to the first array
location and shifts other elements so no values are lost

