
Topic 7

1. Arrays
2. Common array algorithms
3. Arrays / functions
4. Problem solving: adapting algorithms
5. Problem solving: discovering algorithms
6. 2D arrays
7. Vectors
8. Chapter Summary

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Vectors

 The vector type was added to C++ to improve upon the
array. Like the string type, it combines built-in

member functions with data.

A vector

is not fixed in size when it is created

AND

 you can keep putting things into it

 forever!

 (Until your computer runs out of RAM.)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Using Vectors

• When you need to work with a large number of values –
all together, the vector construct is your best choice.

• By using a vector you

– can conveniently manage collections of data

– do not worry about the details of how they are stored

– do not worry about how many are in the vector
• a vector automatically grows to any desired size

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Declaring Vectors

 When you declare a vector, you specify the type of the
elements like you would with an array, but the type must be

preceded by the word vector.

 vector<double> data;

The element type must be in angle brackets. Other examples:
vector<int> counts;

vector<string> team_names;

By default, a vector is empty when created.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Declaring an non-empty Vector

You can specify the initial size.
You still must specify the type of the elements.

For example, here is a definition of a
vector of doubles whose initial size is 10.

 vector<double> data(10);

This is very close to the data array we used earlier.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Vector Examples: Table 2

vector<int> numbers(10); A vector of ten integers.

vector<string> names(3); A vector of three strings.

vector<double> values; A vector of size 0.

vector<double> values();
Error: Does not define a
vector.

vector<int> numbers;
for (int i = 1; i <=10; i++)
{ numbers.push_back(i);}

A vector of ten integers, filled
with 1, 2, 3, ..., 10.

vector<int> numbers(10);
for (int i = 0; i < numbers.size(); i++)
{ numbers[i] = i + 1;}

Another way of defining a
vector of ten integers
1, 2, 3, ..., 10.

vector<int> numbers = { 1, 2, 3, 4,
5, 6, 7, 8, 9, 10 };

This syntax is supported with
C++ 11 and above.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Accessing Elements in Vectors

You can access the elements in a vector
the same way as in an array, using an [index].
 vector<double> values(4);
 //display the forth element
 cout << values[3] << end;

 HOWEVER…
 It is an error to access a element that is not in a vector.

 vector<double> values(4);
 //display the fifth element
 cout << values[4] << end; //ERROR

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector push_back and pop_back

The function push_back puts a value into a vector:

 values.push_back(32); //32 added to end of vector

The vector increases its size by 1.

pop_back removes the last value placed into the vector, and the
size decreases by 1:

 values.pop_back();

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

push_back Adds Elements and Increments size

// an empty vector
vector<double> values;

values.push_back(32)
//values.size() now is 1

values.push_back(54);

values.push_back(37.5);
//values.size() now is 3

values.pop_back();
//removes the 37.5
//values.size()==2

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

push_back with User Input

You can use push_back to put user input into a vector:

vector<double> values;
double input;
while (cin >> input)
{

 values.push_back(input);
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

A Weakness of Arrays

 With arrays, we must separately keep track of the current_size
and the capacity. To display every element, we'd have to know

the current size, assumed 10 below:

for (int i = 0; i < 10; i++)
{

 cout << values[i] << endl;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector size()

 Vectors have the size member function

which returns the current size of a vector.
The vector always knows how many elements

are in it and you can always ask it to give you
that quantity by calling the size method:

for (int i = 0; i < values.size(); i++)
{
 cout << values[i] << endl;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector Parameters to Functions

The following function computes the sum of a vector of
floating-point numbers:

double sum(vector<double> values)
{
 double total = 0;
 for (int i = 0; i < values.size(); i++)
 {
 total = total + values[i];
 }
 return total;
}
This function visits the vector elements, but does not change them.

Unlike an array, a vector is passed by value (copied) to a
function, not passed by reference.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector Parameters – Changing the Values with &

If the function should change the values stored in the vector,
then a vector reference must be passed, just like with int
and double reference parameters. The & goes after the
<type>:

void multiply(vector<double>& values, double factor){
for (int i = 0; i < values.size(); i++)
{
 values[i] = values[i] * factor;
}

}

For Efficiency, a Constant vector Reference

• Using a constant reference (Special Topic 5.2)
for vector parameters avoids the need for the
compiled code to copy the vector to feed the
function, which could be inefficient

• Works only for parameters the function does not
want to modify:

 double sum2(const vector<double>& values)
{ … }
// const & added for efficiency

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vectors Returned from Functions

Sometimes the function should return a vector.
Vectors are no different from any other data types in this

regard.
Simply declare and build up the result in the function and

return it:

vector<int> squares(int n)
{
 vector<int> result;
 for (int i = 0; i < n; i++)
 {
 result.push_back(i * i);
 }
 return result;
}

The function returns the squares from 02 up to (n – 1) 2
as a vector.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Vectors do not suffer the limitations of arrays, where we
had to include a code loop to copy each element.

vector<int> squares;
for (int i = 0; i < 5; i++)

{
 squares.push_back(i * i);
}

vector<int> lucky_numbers;
 // Initially empty

lucky_numbers = squares; //vector copy
 // Now lucky_numbers contains

 // the same elements as squares

vector Algorithms (Copying): Vectors Can Be Assigned!

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector Algorithms – Finding Matches

 Suppose we want all the values in a vector that are
greater than a certain value, say 100, in a vector.

 Store them in another vector:

vector<double> matches;
const double MATCH=100;
for (int i = 0; i < values.size(); i++)
{
 if (values[i] > MATCH)
 {
 matches.push_back(values[i]);
 }
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector Algorithms – Removing an Element, Unordered

 If you know the position of an element you want to remove
from a vector in which the elements are not in any order,
as you did in an array,

 1. overwrite the element at that position with the last element
 2. remove the last element with pop_back()

which also makes the vector smaller.

int last_pos = values.size() - 1;
 // Take the position of the last element
values[pos] = values[last_pos];
 // Replace element at pos with last element
values.pop_back();
 // Delete last element to make vector
 // one smaller

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector Algorithms – Removing an Element, Ordered

 If you know the position of an element you want to remove
from a vector in which the elements are in some order…

As you did in an array,

 move all the elements after that position,

 then remove the last element to reduce the size.

for (int i = pos + 1; i < values.size(); i++)
{
 values[i - 1] = values[i];
}
data.pop_back();

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector Algorithms – Inserting an Element, Unordered

 When you need to insert an element into a
vector whose elements are not in any order…

values.push_back(new_element);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector Algorithms – Inserting an Element, Ordered

 However when the elements in a vector are ordered,
it’s a bit more complicated, like it was in the array.

 If you know the position, say pos, to insert the new element,
 as in the array version, you need to move all the elements

“up”, but FIRST YOU GROW the vector by 1 to make room:

int last_pos = values.size() - 1;
values.push_back(values[last_pos]); //grow it
for (int i = last_pos; i > pos; i--)
{
 values[i] = values[i - 1];
}
values[pos] = new_element;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector Algorithms: Sorting with the C++ Library

Recall that you call the sort function to sort an array.
This can be used on vectors also.

The syntax for vectors uses 2 more built-in vector functions,
which tell the address (a reference) to the first and last vector

elements:

Don’t forget to

#include <algorithm>

sort(values.begin(), values.end());

Two Dimensional vectors: a vector of vectors

There are no 2D vectors, but if you want to store rows and
columns, you can use a vector of vectors. For example, the
medal counts of Section 6.6:

vector<vector<int>> counts;
//counts is a vector of rows. Each row is a vector<int>

You need to initialize it, to make sure there are rows and
columns for all the elements.

for (int i = 0; i < COUNTRIES; i++)
{
 vector<int> row(MEDALS);
 counts.push_back(row);
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector of vectors

• You can access the vector counts[i][j] in the same
way as 2D arrays.
– counts[i] denotes the ith row, and counts[i][j] is the value in the jth

column of that row.

• The advantage over 2D arrays:
– vector row and column sizes don’t have to be fixed at compile time.

int countries = . . .;
int medals = . . .;
vector<vector<int>> counts;
for (int i = 0; i < countries; i++)
{
 vector<int> row(medals);
 counts.push_back(row);
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

vector of vectors: Determining the row/column sizes

To find the number of rows and columns:

vector<vector<int>> values = . . .;

int rows = values.size();
int columns = values[0].size();

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Which to Use? vector or array?

• For most programming tasks, vectors are easier to use
than arrays. A vector:
– can grow and shrink.
– remembers its size.
– Has handy built-in functions like

• begin(), end()
• push_back(), pop_back()
• size()
• at(): this is an alternative to the [] notation to choose an element,

and includes bounds checking to detect invalid subscripts

• Advanced programmers may prefer arrays for efficiency.
• You still need to to use arrays if you work with older

programs or use C without the "++", such as in
microcontroller applications.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Range-Based for Loop

C++ 11 and after added a convenient for() syntax to
visiting all elements in a “range” in a vector. No index
variable nor comparison is needed:

vector<int> values = {1, 4, 9, 16, 25, 36};
for (int v : values) //visits all elements
{
 cout << v << " ";
}

If you want to modify elements, you must declare the loop
variable as a reference:

for (int& v : values) // & allows modifying the vector elements
{
 v++; //increment every element
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Range-Based for Loop also Works for Arrays

The range-based for loop also works for arrays. For example:

int primes[] = { 2, 3, 5, 7, 11, 13 };
for (int p : primes)
{
 cout << p << " ";
}
However, the range based for will loop over the entire capacity of the
array, whether it is filled or partially empty.
Finally, you can use auto instead of the element type, for either arrays
or vectors:
for (auto p : primes)
{
 cout << p << " ";
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

CHAPTER SUMMARY #3

Use vectors for managing collections whose size can change.
•A vector stores a sequence of values whose size can
change.
•Use the size member function to obtain the current size of
a vector.
•Use the push_back member function to add more
elements to a vector. Use pop_back to reduce the size.
•vectors can occur as function arguments and return
values.
•Use a reference parameter (vector<int>&) to modify the
contents of a vector.
•A function can return a vector.

