
Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Seven: Pointers and
Structures

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• To be able to declare, initialize, and use pointers
• To understand the relationship between arrays and

pointers
• To be able to convert between string objects and

character pointers
• To become familiar with dynamic memory allocation

and deallocation
• To use structures to aggregate data items

Chapter Goals

Topic 1

1. Defining and using pointers
2. Arrays and pointers
3. C and C++ strings
4. Dynamic memory allocation
5. Arrays and vectors of pointers
6. Problem solving: draw a picture
7. Structures
8. Pointers and structures

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Genady Maryash
Data-only Classes

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 A variable contains a value,

but a pointer specifies where a value is located.

 A pointer denotes the
memory location of a variable

Pointers

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• In C++, pointers are important for several reasons.

– Pointers allow sharing of values stored in variables
in a uniform way

– Pointers can refer to values that are allocated on
demand (dynamic memory allocation)

– Pointers are necessary for implementing
polymorphism, an important concept in
object-oriented programming (later)

Pointer Usages

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Harry wants a program to manage bank deposits and
withdrawals.

… balance += depositAmount …
… balance -= withdrawalAmount …

But not all deposits and withdrawals should be from the same bank.

 By using a pointer,
it is possible to switch to a different account

 without modifying the code for
deposits and withdrawals.

Harry Needs a Banking Program

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Harry starts with a variable for his account balance.
It should be initialized to 0 since there is no money yet.

double harrys_account = 0;

If Harry anticipates that he may someday use other
accounts, he can use a pointer to access any accounts.

So Harry also declares a pointer variable
named account_pointer :

double* account_pointer;

The type of this variable is “pointer to double”.

Pointers to the Rescue

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Every byte in RAM has an address as pictured here (this small RAM block is
addressed 20266 through 20348, shown in groups of eight bytes)

harrys_account as a double, happens to be located at address 20300.

Addresses and Pointers

20266
20274
20292
20300
20308
20316
20324
20332
20340
20348

harrys_account 0

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

When Harry declares a pointer variable, he initializes it to point
to harrys_account:

double harrys_account = 0;
double* account_pointer = & harrys_account;

• The & operator yields the location (address) of a variable.

• Taking the address of a double variable yields a value of
type double* so everything fits together nicely.

account_pointer now contains the address of
harrys_account

Pointer Initialization

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

And, of course, account_pointer is somewhere in RAM,
though we really don’t care where it is:

Pointers Also Reside in RAM

20266
20274
20292
20300
20308
20316
20324
20332
20340
20348

harrys_account

account_pointer

0

20300

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Harry wanted to use his account, but he found the balance was zero:
 double harrys_account = 0;
account_pointer = &harrys_account; //Picture #1
double joint_account = 1000;

 To access his joint account hoping it still has a non-zero
balance, Harry would change the pointer:

account_pointer = &joint_account; //Picture #2

Addresses and Pointers

Genady Maryash
1000

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Do note that the computer stores numbers,

not arrows.

Addresses and Pointers – and ARROWS

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 The "dereferencing operator" * lets you use a pointer to get
the data. Use *account_pointer as a substitute for the

name of the variable the pointer points to:

// display the current balance
cout << *account_pointer << endl;

It can be used on the left and/or the right of an assignment:

// withdraw $100
*account_pointer = *account_pointer - 100;

Accessing the Memory Pointed to by A Pointer Variable

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

// deposit $1000
*account_pointer = *account_pointer + 1000;

Harry Makes the Deposit

Pointer Syntax Examples: Table 1, part 1

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Assume the following declarations:
 int m = 10; // Assumed to be at address 20300
 int n = 20; // Assumed to be at address 20304
 int* p = &m;

Expression Value Comment

p 20300 The address of m.
*p 10 The value stored at that address.
&n 20304 The address of n.

p = &n; p gets
20304 Set p to the address of n.

*p 20 The value stored at the changed address.

m = *p; m gets 20 Stores 20 into m.

Pointer Syntax Examples: Table 1, part 2: Bad Syntax

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Assume the following declarations:
 int m = 10; // Assumed to be at address 20300
 int n = 20; // Assumed to be at address 20304
 int* p = &m;
Expression Value Comment

m = p; Error m is an int value; p is an int* pointer. The
types are not compatible.

&10 Error You can only take the address of a variable.

&p
The address
of p, perhaps

20308

Warning: This is the location of a pointer variable,
not the location of an integer. You almost never
want to use the address of a pointer variable.

double x
= 0;

p = &x;
Error p has type int*, &x has type double*.

These types are incompatible.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

When a pointer variable is first defined, it is a random address.
Using that pointer (and its random address) is an error, until

the pointer has been initialized.

double* account_pointer; // Forgot to initialize
*account_pointer = 1000; // ERROR! account_pointer
// contains an unpredictable value, program crashes

If you don't already know what the pointer will point to, initialize it with
nullptr:

 double* account_pointer = nullptr;

Trying to access data through a nullptr pointer will cause your program
to terminate (but more gracefully than an uninitialized pointer would).

Errors Using Pointers – Uninitialized Pointer Variables

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Harry’s Banking Program, part 1

// Here is the complete banking program
#include <iostream>
using namespace std;

int main()
{
 double harrys_account = 0;
 double joint_account = 2000;
 double* account_pointer = &harrys_account;
 *account_pointer = 1000; // Initial deposit

 // Withdraw $100
 *account_pointer = *account_pointer - 100;

 // Print balance
 cout << "Balance: " << *account_pointer << endl;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Harry’s Banking Program, part 2

 // Change the pointer value so that the same
 // statements now affect a different account
 account_pointer = &joint_account;

 // Withdraw $100
 *account_pointer = *account_pointer - 100;

 // Print balance (of joint account)
 cout << "Balance: " << *account_pointer << endl;

 return 0;
}

Practice It

Two groups jointly charter a bus and fill it with travelers. A variable
int count = 0;

is to be accessed through two pointers p and q.

1. Declare the pointer variable p. Do not initialize:
2. Initialize p with the address of count:
3. Complete this statement to check whether there is

space in the bus for another passenger, using the
pointer p:
• if (________________ < CAPACITY)

4. Increment the value to which p points, using ++:

5. Declare the pointer variable q and initialize it with p:

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Practice It More
Show the output of each of these code snippets. Answer "?" if the output
cannot be determined:

int a = 1;
int b = 2;
int* p = &a;
cout << *p << " "; _________________
p = &b;
cout << *p << endl; _________________

int a = 15;
int* p = &a;
int* q = &a;
cout << *p + *q << endl; _________________

int a = 15;
int* p = &a;
cout << *p << " " << p << endl; ______________

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error: Confusing Data And Pointers: Where’s the *?

double* account_pointer = &joint_account;
account_pointer = 1000; // ERROR !

The assignment statement does not set the joint
account balance to 1000.

It sets the pointer variable, account_pointer,
to point to memory address 1000.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Error: Multiple Pointers Defined in a Single Statement

It is legal to define multiple variables together, like this:

int i = 0, j = 1;

This style is confusing when used with pointers:

double* p, q;

The * associates only with the first variable.
That is, p is a double* pointer, and q is a double value.
To avoid any confusion, it is best to define each pointer

variable separately:

double* p;
double* q;

Alternatively, you can move the * next to the variable name:

double *p, *q;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Function Arguments: Pointers vs. References
Recall that the & symbol is used for reference parameters:

void withdraw(double& balance, double amount)
{
 if (balance >= amount)
 balance = balance - amount;
}

A call of this function would be:
withdraw(harrys_checking, 1000);

We can accomplish the same thing using pointers:
void withdraw(double* balance, double amount)
{
 if (*balance >= amount)

*balance = *balance - amount;
}

But the call will have to feed the function an address (pointer
variable or reference):

withdraw(&harrys_checking, 1000);

