© Suzanne Tucker/iStockphoto.

Chapter Seven: Pointers and
Structures

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Chapter Goals

 To be able to declare, initialize, and use pointers

* To understand the relationship between arrays and
pointers

« To be able to convert between string objects and
character pointers

« To become familiar with dynamic memory allocation
and deallocation

* To use structures to aggregate data items

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Topic 1

Defining and using pointers
Arrays and pointers

C and C++ strings

Dynamic memory allocation
Arrays and vectors of pointers
Problem solving: draw a picture
Data-only Classes

Pointers and structures

©®© NSO Ok WD~

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved


Genady Maryash
Data-only Classes


Pointers

A variable contains a value,

but a pointer specifies where a value is located.

A pointer denotes the
memory location of a variable

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Pointer Usages

* |In C++, pointers are important for several reasons.

— Pointers allow sharing of values stored in variables
In a uniform way

— Pointers can refer to values that are allocated on
demand (dynamic memory allocation)

— Pointers are necessary for implementing
polymorphism, an important concept in
object-oriented programming (later)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Harry Needs a Banking Program

Harry wants a program to manage bank deposits and
withdrawals.

.. balance += depositAmount ..
.. balance -= withdrawalAmount ..

But not all deposits and withdrawals should be from the same bank.

By using a pointer,
it is possible to switch to a different account
without modifying the code for
deposits and withdrawals.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Pointers to the Rescue

Harry starts with a variable for his account balance.
It should be initialized to O since there is no money yet.

double harrys account = 0;

If Harry anticipates that he may someday use other
accounts, he can use a pointer to access any accounts.

So Harry also declares a pointer variable
named account pointer:
double* account pointer;

The type of this variable is “pointer to double”.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Addresses and Pointers

Every byte in RAM has an address as pictured here (this small RAM block is
addressed 20266 through 20348, shown in groups of eight bytes)

harrys account as a double, happens to be located at address 20300.

20200
20274
20292
harrys account 0 20300
20308
20316
20324
20332
20340
20348

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Pointer Initialization

When Harry declares a pointer variable, he initializes it to point
to harrys account:

double harrys account = 0;
double* account pointer = &harrys account;

.+ The & operator yields the location (address ) of a variable.

« Taking the address of a double variable yields a value of
type double* so everything fits together nicely.

account pointer now contains the address of
harrys account

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Pointers Also Reside in RAM

And, of course, account pointer is somewhere in RAM,
though we really don’t care where it is:

20266
20274
20292
harrys account 0 20300
20308
20316
20324
20332

account pointer 20334 0

20348

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Addresses and Pointers

Harry wanted to use his account, but he found the balance was zero:

double harrys account = 0;
account pointer = &harrys account; //Picture #1

double joint account = 1000;

To access his joint account hoping it still has a non-zero
balance, Harry would change the pointer:

account pointer = &joint account; //Picture #2

o double* account_pointer = &harrys account 20300
harrys account = 0 Point to
\ memory at
J given address
account_pointer = 20300 —

12 account pointer = &joint account e
harrys account = 0
account_pointer = 20312 — Point to
N memory at
20312 new address
joint account = 1000 -

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved


Genady Maryash
1000


Addresses and Pointers — and ARROWS

Do note that the computer stores numbers,

not arrows.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Accessing the Memory Pointed to by A Pointer Variable

The "dereferencing operator" * lets you use a pointer to get
the data. Use *account pointer as a substitute for the
name of the variable the pointer points to:

// display the current balance
cout << *account pointer << endl;

It can be used on the left and/or the right of an assignment:

// withdraw $100
*account pointer = *account pointer - 100;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Harry Makes the Deposit

// deposit $1000
*account pointer = *account pointer + 1000;

0 *account pointer = 1000 20312
joint_account = 1000 Update
memory at
j given address
account pointer = 20312 —
9 balance = *account pointer 20312
joint account = 1000
Read from
memory
account_pointer = 20312 —

balance = 1000

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Pointer Syntax Examples: Table 1, part 1

Assume the following declarations:

int m = 10; // Assumed to be at address 20300
int n = 20; // Assumed to be at address 20304
int* p = &m;
Expression Value Comment
P 20300 The address of m.
*p 10 The value stored at that address.
&n 20304 The address of n.
P = &n; ZPO%%E Set p to the address of n.
*p 20 The value stored at the changed address.
m = *p; | mgets 20 Stores 20 into m.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Pointer Syntax Examples: Table 1, part 2: Bad Syntax

Assume the following declarations:

int m = 10; // Assumed to be at address 20300
int n = 20; // Assumed to be at address 20304
int* p = &m;

Expression Value Comment
mis an int value; pisan int* pointer. The
m = p; Error .
types are not compatible.
&10 Error |You can only take the address of a variable.

The address [Warning: This is the location of a pointer variable,
&p of p, perhaps [not the location of an integer. You almost never
20308 |want to use the address of a pointer variable.

double x p has type int*, &x has type double™.
= 0; Error : .
5= These types are incompatible.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Errors Using Pointers — Uninitialized Pointer Variables

When a pointer variable is first defined, it is a random address.

Using that pointer (and its random address) is an error, until
the pointer has been initialized.

double* account pointer; // Forgot to initialize

1000; // ERROR! account pointer
// contains an unpredictable value, program crashes

*account_pointer

If you don't already know what the pointer will point to, initialize it with
nullptr:

double* account pointer = nullptr;

Trying to access data through a nullptr pointer will cause your program
to terminate (but more gracefully than an uninitialized pointer would).

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Harry’s Banking Program, part 1

// Here is the complete banking program
#include <iostream>
using namespace std;

int main()

{

double harrys account = 0;

double joint account = 2000;

double* account pointer = &harrys account;
*account pointer 1000; // Initial deposit

// Withdraw $100
*account pointer = *account pointer - 100;

// Print balance
cout << "Balance: " << *account_pointer << endl;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Harry’s Banking Program, part 2

// Change the pointer wvalue so that the same
// statements now affect a different account
account pointer = &joint account;

// Withdraw $100
*account pointer = *account pointer - 100;

// Print balance (of joint account)
cout << "Balance: " << *account pointer << endl;

return 0;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Practice It

Two groups jointly charter a bus and fill it with travelers. A variable
int count = 0;
is to be accessed through two pointers p and g.

1. Declare the pointer variable p. Do not initialize:
2. Initialize p with the address of count:

3. Complete this statement to check whether there is
space in the bus for another passenger, using the
pointer p:

* 1f | < CAPACITY)

4. Increment the value to which p points, using ++:

5. Declare the pointer variable g and initialize it with p:

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Practice It More

Show the output of each of these code snippets. Answer "?" if the output
cannot be determined:

int a = 1;

int b = 2;

int* p = &a;

cout << *p << " "y

p = &b;

cout << *p << endl;

int a = 15;

int* p = &a;

int* g = &a;

cout << *p + *g << endl;

int a = 15;
int* p = &aj;
cout << *p << " " K p << endl;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Common Error: Confusing Data And Pointers: Where’s the *?

double* account pointer = &joint account;
account pointer = 1000; // ERROR !

The assignment statement does nof set the joint
account balance to 1000.

It sets the pointer variable, account pointer,
to point to memory address 1000.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Error: Multiple Pointers Defined in a Single Statement

It is legal to define multiple variables together, like this:
int i =0, §j = 1;

This style is confusing when used with pointers:
double* p, qg;

The * associates only with the first variable.
That is, p is a double* pointer, and g is a double value.

To avoid any confusion, it is best to define each pointer
variable separately:

double* p;
double* q;
Alternatively, you can move the * next to the variable name:

double *p p *q ’ Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



Function Arguments: Pointers vs. References
Recall that the & symbol is used for reference parameters:

void withdraw (double& balance, double amount)

{

if (balance >= amount)
balance = balance - amount;

}
A call of this function would be:

withdraw (harrys checking, 1000);

We can accomplish the same thing using pointers:
void withdraw (double* balance, double amount)
{
if (*balance >= amount)
*balance = *balance - amount;

}

But the call will have to feed the function an address (pointer
variable or reference):
withdraw (&harrys checking, 1000);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved



