
Topic 4

1. Defining and using pointers
2. Arrays and pointers
3. C and C++ strings
4. Dynamic memory allocation
5. Arrays and vectors of pointers
6. Problem solving: draw a picture
7. Structures
8. Pointers and structures

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

You may not know beforehand how many values you need in
an array.

To solve this problem, use dynamic memory allocation and ask
the C++ run-time system to create new values whenever you
need them.

The run-time system keeps a large storage area, called the free
store or heap, that can allocate values and arrays of any type:

double *p = new double[n];
allocates an array of size n, and yields a pointer to the starting
element. (Here n need not be a constant.)

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation Examples

You need a pointer variable to hold the pointer you get:

 //get a single variable
 double* account_pointer = new double;

 //get an array variable
 double* account_array = new double[n];

 Now you can use account_array as an array.

 The magic of array/pointer duality
lets you use the array notation

 account_array[i] to access the ith element.

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation: delete

When your program no longer needs the memory
that you asked for with the new operator,

you must return it to the heap
using the delete operator for single areas of memory

(which you would probably never use anyway).

delete account_pointer;
delete[] account_array;

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Don't Use a Pointer after delete

After you delete a memory block,
you can no longer use it.

The OS is very efficient – and quick – “your” storage
space may already be used elsewhere.

delete[] account_array;
account_array[0] = 1000;
 // NO! You no longer own the
 // memory of account_array

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation – Resizing an Array

 Unlike static arrays, you can change the size of a
dynamic array.

Make a new, bigger array and copy the old data:
//n = size of the original array

double* bigger_array = new double[2 * n];
for (int i = 0; i < n; i++)
{
 bigger_array[i] = account_array[i];
}
delete[] account_array;
account_array = bigger_array;
n = 2 * n;

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation – THE RULES

1. Every call to new must be matched
by exactly one call to delete.

2. Use delete[] to delete arrays.
And always assign NULL to the pointer after that.

3. Don’t access a memory block (don't use the
pointer) after it has been deleted.

If you don’t follow these rules, your program can
 crash or run unpredictably

or worse…

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation – Common Errors: Table 5
Statements Error

int* p;
*p = 5;
delete p;

There is no call to new int.

int* p = new int;
*p = 5;
p = new int;

The first allocated memory
block was never deleted.

int* p = new int[10];
*p = 5;
delete p;

The delete[] operator should
have been used.

int* p = new int[10];
int* q = p;
q[0] = 5;
delete p; delete q;

The same memory block was
deleted twice.

int n = 4;
int* p = &n;
*p = 5; delete p;

You can only delete memory
blocks that you obtained from
calling new.

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Error: Dangling Pointers

It is a run-time error to use a pointer that points to memory
that has already been deleted.

Such a pointer is called a dangling pointer.

 Because the freed memory will be reused for other
purposes, you can do real damage with a dangling
pointer. For example:
int* values = new int[n];
// Process values

delete[] values; //values now dangling

// Some other work
values[0] = 42; //ERROR

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Avoiding Dangling Pointers

To prevent a dangling pointer, assign the special value
nullptr

To any pointer that you delete:

int* values = new int[n];
// Process values

delete[] values; //values now dangling

values = nullptr; //makes pointer safe

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Error: Memory Leaks

A memory block that is never deallocated is called a memory leak.

If you allocate a few small blocks of memory and forget to
deallocate them, this is not a huge problem.

 When the program exits, all allocated memory is returned to the
operating system.

Every call to new should have a matching call to delete.

But if your program runs for a long time, or if it allocates lots
of memory (perhaps in a loop) without the deletes, then it
can run out of memory and crash.

