
Topic 7

1. Defining and using pointers
2. Arrays and pointers
3. C and C++ strings
4. Dynamic memory allocation
5. Arrays and vectors of pointers
6. Problem solving: draw a picture
7. Classes of objects
8. Pointers and objects

Clases: User-defined Mixed Data Types
• To group values of a single type together under a shared name, use an

array
• To group different types together with one name, use an object of a

class (a structured type)
– Like arrays, pointers prove quite useful with class type objects

• Define a class type with the class reserved word:
class StreetAddress //has 2 members {
public:
 int house_number; //first member
 string street_name;
};

StreetAddress white_house; //defines an object of this class

// You use the “dot notation” to access members
white_house.house_number = 1600;
white_house.street_name = "Pennsylvania Avenue";

Objects: Assignment, but No Comparisons

Use the = operator to assign one class type object's value to another. All
members are assigned simultaneously.

StreetAddress dest;
dest = white_house;

is equivalent to
dest.house_number = white_house.house_number;
dest.street_name = white_house.street_name;

However, you cannot compare two objects for equality.
if (dest == white_house) // Error

You must compare individual members to compare the whole object:
if (dest.house_number == white_house.house_number
 && dest.street_name == white_house.street_name)//Ok

Object Initialization

• Objects of class types can be initialized when defined, similar to
array initialization:

class StreetAddress {
public:
 int house_number;
 string street_name;
};

StreetAddress white_house = {1600,
"Pennsylvania Avenue“}; // initialized

The initializer list must be in the same order as in the class
definition.

Functions and class

Class type objects can be function arguments and return values.
For example:
void print_address(StreetAddress address)
{
 cout << address.house_number << " " <<

address.street_name;
}

A function can return a class instance. For example:

StreetAddress make_random_address()

{
 StreetAddress result;
 result.house_number = 100 + rand() % 100;
 result.street_name = "Main Street";
 return result;
}

Arrays of Objects
You can put objects into arrays. For example:
StreetAddress delivery_route[ROUTE_LENGTH];
delivery_route[0].house_number = 123;
delivery_route[0].street_name = "Main Street";

You can also access an object's value in its entirety, like this:
StreetAddress start = delivery_route[0];

Objects with Array Members

Objects of class types can contain
arrays. For example:

class MonthlyTemperatures {
public:
 string location;
 double values[12];
};

To access an array element, first select the array member
with the dot notation, then use brackets:

MonthlyTemperatures death_valley_noon;
death_valley_noon.values[2] = 82;

Nested Objects
A class can have a member that is an object of another
class. For example:

class Person {
public:
 string name;
 StreetAddress work_address;
}

You can access the nested member in its entirety, like
this:

Person theodore;
theodore.work_address = white_house;

To select a member of a member, use the dot operator
twice:

theodore.work_address.street_name =
"Pennsylvania Avenue";

Practice It:
Write the code snippets to:

1. Declare an object "a" of class StreetAddress.

2. Set it's house number to 2201.

3. Set the street to "C Street NW".

Objects of programmer-defined class types have a "HAS A" relationship with
their data members. Objects "have" their data members. Those data
members, in turn, have values.

Primitive objects (variables): int, float, etc., on the other hand, only have a
single value.

Soon we will learn other things, of which objects of class types are capable.

Topic 8

1. Defining and using pointers
2. Arrays and pointers
3. C and C++ strings
4. Dynamic memory allocation
5. Arrays and vectors of pointers
6. Problem solving: draw a picture
7. Classes of Objects
8. Pointers and Objects

Object Pointers for Dynamic Allocation

As with all dynamic allocations, you use the new operator:
StreetAddress* address_pointer = new StreetAddress;

The following is incorrect syntax for accessing a member of the object:
*address_pointer.house_number = 1600; // Error

…because the dot operator has a higher precedence than the * operator. That
is, the compiler thinks that you mean house_number is itself a pointer:

*(address_pointer.house_number) = 1600; // Error

Instead, you must first apply the * operator, then the dot:
(*address_pointer).house_number = 1600; // OK

Because this is such a common situation, an arrow operator -> exists to
show class member access via a pointer:

address_pointer->house_number = 1600; // OK – use this

Classes with Pointer Members
Objects may need to contain pointer members. For example,

class Employee {
public:
 string name;
 StreetAddress* office;
};
// defining 2 accounting employees:
StreetAddress accounting;
accounting.house_number = 1729;
accounting.street_name = "Park Avenue";

Employee harry;
harry.name = "Smith, Harry";
harry.office = &accounting;
Employee sally;
sally.name = "Lee, Sally";
sally.office = &accounting;

Classes and Pointers: Complete Code Example, Part 1
// sec08/streets2.cpp
#include <iostream>
#include <string>
using namespace std;

class StreetAddress {
public:
 int house_number;
 string street_name;
};

class Employee {
public:
 string name;

StreetAddress* office;
};

void print_address(StreetAddress address) {
 cout << address.house_number << " " <<address.street_name;
}

Structures and Pointers: Complete Code Example, Part 2
void print_employee(Employee e)
{
 cout << e.name << " working at ";
 print_address(*e.office);
}
int main()
{
 cout << "A dynamically allocated object" << endl;
 StreetAddress* address_pointer = new StreetAddress;
 address_pointer->house_number = 1600;
 address_pointer->street_name = "Pennsylvania
Avenue";
 print_address(*address_pointer);
 delete address_pointer;
 cout<<endl<< "Two employees in the same office"
<<endl;
 StreetAddress accounting;
 accounting.house_number = 1729;
 accounting.street_name = "Park Avenue";

Classes and Pointers: Complete Code Example, Part 3

 Employee harry;
 harry.name = "Smith, Harry";
 harry.office = &accounting;

 Employee sally;
 sally.name = "Lee, Sally";
 sally.office = &accounting;

 cout << "harry: ";
 print_employee(harry);
 cout << endl;

 cout << "sally: ";
 print_employee(sally);
 cout << endl;

Classes and Pointers: Complete Code Example, Part 4

 cout << "After accounting office move" << endl;
 accounting.house_number = 1720;

 cout << "harry: ";
 print_employee(harry);
 cout << endl;
 cout << "sally: ";
 print_employee(sally);
 cout << endl;
 return 0;
}

Chapter Summary, Part 1

Define and use pointer variables.
• A pointer denotes the location of a variable in memory.
• The type T* denotes a pointer to a variable of type T.
int* p = nullptr; // can point to an int

• The & operator yields the location of a variable.
int i = 0;
int* p = &i; // p points to i

• The * operator accesses the variable to which a pointer
points.
cout << p; // prints value of i, pointed to by p

• It is an error to use an uninitialized pointer.
• The nullptr pointer does not point to any object.

– Please initialize unknown pointers to nullptr

Chapter Summary, Part 2

Understand the relationship between arrays and
pointers in C++.
• The name of an array variable is a pointer to the starting

element of the array.
• Pointer arithmetic means adding an integer offset to an

array pointer, yielding a pointer that skips past the given
number of elements.

• The array/pointer duality law:
– a[n] is identical to *(a + n), where a is a pointer into an

array and n is an integer offset.
• When passing an array to a function, only the starting

address is passed.
printf(a); //prints array a

Chapter Summary, Part 3
Use C++ string objects with functions that process
character arrays
• A value of type char denotes an individual character.

Character literals are enclosed in single quotes.
• A literal string (enclosed in double quotes) is an array of
char values with a zero terminator.

• Many library functions use pointers of type char*.
• The c_str member function yields a char* pointer from

a string object.
string s = “This is a C++ string object”;
char arr[] = s.c_str(); //copies C++ string to C-string

• You can initialize C++ string variables with C strings.
string t = arr; //copies C-string to C++ string

• You can access characters in a C++ string object with
the [] operator.

Chapter Summary, Part 4
Allocate and deallocate memory in programs whose memory
requirements aren’t known until run time.
• Use dynamic memory allocation if you do not know in advance

how many values you need.
• The new operator allocates memory from the free store.

int* p = new int[50]; // allocate array of 50
ints

• You must reclaim dynamically allocated objects with the delete
or delete[] operator.
delete[] p; //done using our int array pointed
to by p
p = nullptr; //set p to nullptr to avoid
dangling pointer usage

• Using a dangling pointer (a pointer that points to memory that
has been deleted) is a serious programming error.

• Every call to new should have a matching call to delete.

Chapter Summary, Part 5

Work with arrays of pointers.
• Draw diagrams for visualizing pointers and the data to which they

point.
– Draw the data that is being processed, then draw the pointer variables. When

drawing the pointer arrows, illustrate a typical situation.

Use classes to aggregate data items.
• An object of a class combines member values into a single value.
• Use the dot notation to access members of an object.

Streetaddress home;
home.house_number = 1234;

• When you assign one object value to another, all members are
assigned.

Work with pointers to objects.
• Use the -> operator to access an object member through a pointer

Streetaddress* p = new Streetaddress;
P->house_number = 1234;

