Topic 7

© NSO Ok Wb~

Defining and using pointers
Arrays and pointers

C and C++ strings

Dynamic memory allocation
Arrays and vectors of pointers
Problem solving: draw a picture
Classes of objects

Pointers and objects

Clases: User-defined Mixed Data Types

« To group values of a single type together under a shared name, use an
array
« To group different types together with one name, use an object of a

class (a structured type)
— Like arrays, pointers prove quite useful with class type objects

« Define a class type with the class reserved word:
class StreetAddress //has 2 members {
public:

int house number; //first member

string street name;
};

StreetAddress white house; //defines an object of this class

// You use the “dot notation” to access members

white house.house number = 1600;
white house.street name = "Pennsylvania Avenue";

Objects: Assignment, but No Comparisons

Use the = operator to assign one class type object's value to another. All
members are assigned simultaneously.

StreetAddress dest;
dest = white_house;

IS equivalent to
dest.house number = white house.house number;
dest.street name = white house.street name;

However, you cannot compare two objects for equality.
if (dest == white house) // Error

You must compare individual members to compare the whole ocbject:
if (dest.house number == white house.house number
&& dest.street name == white_house.street_pame)//Ok

Object Initialization

« Objects of class types can be initialized when defined, similar to
array initialization:

class StreetAddress {
public:
int house number;
string street name;

};

StreetAddress white house = {1600,
"Pennsylvania Avenue'“}; // initialized

The initializer list must be in the same order as in the class
definition.

Functions and class

Class type objects can be function arguments and return values.

For example:
void print address (StreetAddress address)

{
cout << address.house_number <L "' LL

address.street name;

}

A function can return a class instance. For example:

StreetAddress make random address ()

{
StreetAddress result;

result.house_number

100 + rand() % 100;
result.street name = "Main Street";
return result;

Arrays of Objects

You can put objects into arrays. For example:
StreetAddress delivery route[ROUTE LENGTH] ;
delivery route[0].house number = 123;

delivery route[0].street name = "Main Street";

You can also access an object's value in its entirety, like this:

StreetAddress start = delivery route[O0]; o7
StreetAddress
house number = 123

street name = Main Street

1]
StreetAddress

house number = 201
street name = Main Street

2]
StreetAddress

house number = 420
street name = First Strect

Objects with Array Members

Objects of class types can contain
arrays. For example:

class MonthlyTemperatures {

public:
string location;
double values[12];

};

MonthlyTemperatures

location = Furnace Creck

values =
double|]

0.0
0.0
82
0.0
0.0

(8]
(1]
(2]
(3]
(4]

To access an array element, first select the array member
with the dot notation, then use brackets:

MonthlyTemperatures death valley noon;

death valley noon.values[2]

82;

Nested Objects

A class can have a member that is an object of another
class. For example:

Person

class Person {

public: name = Theodore Roosevelt

string name; work address =
5 StreetAddress

StreetAddress work address;

house_number = 1600

You can access the nested member in its entirety, like street_name = Penn Ave,
this:

Person theodore;
theodore.work address = white house;

To select a member of a member, use the dot operator
twice:

theodore.work_address.street_name =
"Pennsylvania Avenue";

Practice It:

Write the code snippets to:
1. Declare an object "a" of class StreetAddress.
2. Setit's house number to 2201.

3. Set the street to "C Street NW".

Objects of programmer-defined class types have a "HAS A" relationship with
their data members. Objects "have" their data members. Those data
members, in turn, have values.

Primitive objects (variables): int, £loat, etc., on the other hand, only have a
single value.

Soon we will learn other things, of which objects of class types are capable.

Topic 8

©® NSO Ok W=

Defining and using pointers
Arrays and pointers

C and C++ strings

Dynamic memory allocation
Arrays and vectors of pointers
Problem solving: draw a picture
Classes of Objects

Pointers and Objects

Object Pointers for Dynamic Allocation

As with all dynamic allocations, you use the new operator:

StreetAddress* address pointer = new StreetAddress;

The following is incorrect syntax for accessing a member of the object:
*address pointer.house number = 1600; // Error

...because the dot operator has a higher precedence than the * operator. That
is, the compiler thinks that you mean house number is itself a pointer:

* (address pointer.house number) = 1600; // Error

Instead, you must first apply the * operator, then the dot:
(*address pointer) .house number = 1600; // OK

Because this is such a common situation, an arrow operator —> exists to
show class member access via a pointer:

address_pointer->house number = 1600; // OK — use this

accounting = — _—

Classes with Pointer Members -~ StreetAddress
:i\

Objects may need to contain pointer members. For example, house nusber = 1729 \\
class Employee { street name = Park Ave x
public: |
string name; oy — Beilivee f
StreetAddress* office; /
} ; name = Smuth, Harry
L. . office = ="
// defining 2 accounting employees: |
StreetAddress accounting; f
accounting.house number = 1729; %= . Employee /
accounting.street name = "Park Avenue"; //
- name = Lee Sally /
Employee harry; office =
harry.name = "Smith, Harry";
harry.office = &accounting; Figure 16 Two Pointers to a Shared Structure

Employee sally;
sally.name = "Lee, Sally";
sally.office = &accounting;

Classes and Pointers: Complete Code Example, Part 1
// sec08/streets2.cpp
#include <iostream>
#include <string>
using namespace std;

class StreetAddress {
public:
int house number;
string street name;

};

class Employee {

public:
string name;
StreetAddress* office;

};

void print address (StreetAddress address) {
cout << address.house_pumber << " " <<address.street_name;

Structures and Pointers: Complete Code Example, Part 2
void print employee (Employee e)
{

cout << e.name << " working at ";

print address(*e.office);

}

int main|()

{
cout << "A dynamically allocated object" << endl;

StreetAddress* address pointer = new StreetAddress;

address pointer->house number 1600;

address pointer->street name = "Pennsylvania
Avenue";

print address(*address pointer);

delete address pointer;

cout<<endl<< "Two employees in the same office"
<<endl;

StreetAddress accounting;

accounting.house number = 1729;

accounting.street name = "Park Avenue";

Classes and Pointers: Complete Code Example, Part 3

Employee harry;
harry.name = "Smith, Harry";
harry.office = &accounting;

Employee sally;
sally.name = "Lee, Sally";
sally.office = &accounting;

cout << "harry: ";
print employee (harry) ;
cout << endl;

cout << "sally: ";
print employee (sally) ;
cout << endl;

Classes and Pointers: Complete Code Example, Part 4

cout << "After accounting office move" << endl;
accounting.house number = 1720;

cout << "harry: ";
print employee (harry) ;
cout << endl;

cout << "sally: ";
print employee (sally) ;
cout << endl;

return 0O;

Chapter Summary, Part 1

Define and use pointer variables.

A pointer denotes the location of a variable in memory.
The type T* denotes a pointer to a variable of type T.

int* p = nullptr; // can point to an int
The & operator yields the location of a variable.
int 1 = 0;

int* p = &i; // p points to 1

The * operator accesses the variable to which a pointer
points.

cout << p; // prints value of 1, pointed to by p
It is an error to use an uninitialized pointer.

The nullptr pointer does not point to any object.
— Please initialize unknown pointers to nullptr

Chapter Summary, Part 2

Understand the relationship between arrays and
pointers in C++,

 The name of an array variable is a pointer to the starting
element of the array.

* Pointer arithmetic means adding an integer offset to an
array pointer, yielding a pointer that skips past the given
number of elements.

* The array/pointer duality law:

— al[n] isidenticalto * (a + n), where ais a pointer into an
array and n is an integer offset.

« When passing an array to a function, only the starting
address is passed.

printf(a); //prints array a

Chapter Summary, Part 3
Use C++ string objects with functions that process
character arrays

« Avalue of type char denotes an individual character.
Character literals are enclosed in single quotes.

 Aliteral string (enclosed in double quotes) is an array of
char values with a zero terminator.

« Many library functions use pointers of type char™®.

* The ¢ _str member function yields a char™ pointer from

a string object.
string s = “"This is a C++ string object”;
char arr[] = s.c _str(); //copies C++ string to C-string

* You can initialize C++ string variables with C strings.
string t = arr; //copiles C-string to C++ string
* You can access characters in a C++ string object with
the [] operator.

Chapter Summary, Part 4

Allocate and deallocate memory in programs whose memory
requirements aren’t known until run time.

Use dynamic memory allocation if you do not know in advance
how many values you need.

The new operator allocates memory from the free store.

int* p = new int[50]; // allocate array of 50
ints

You must reclaim dynamically allocated objects with the delete
or delete[] operator.

delete[] p; //done using our int array pointed
to by p

p = nullptr; //set p to nullptr to avoid
dangling polinter usage

Using a dangling pointer (a pointer that points to memory that
has been deleted) is a serious programming error.

Every call to new should have a matching call to delete.

Chapter Summary, Part 5

Work with arrays of pointers.

« Draw diagrams for visualizing pointers and the data to which they
point.

— Draw the data that is being processed, then draw the pointer variables. When
drawing the pointer arrows, illustrate a typical situation.

Use classes to aggregate data items.
* An object of a class combines member values into a single value.
« Use the dot notation to access members of an object.

Streetaddress home;

home.house number = 1234;
 When you assign one object value to another, all members are
assigned.

Work with pointers to objects.
« Use the -> operator to access an object member through a pointer

Streetaddress* p = new Streetaddress;
P->house number = 1234;

