
Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Eight: Streams

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• To be able to read and write files
• To convert between strings and numbers using string

streams
• To process command line arguments
• To understand the concepts of sequential and

random access

Chapter Goals

Topic 1

1. Reading and writing text files
2. Reading text input
3. Writing text output
4. Parsing and formatting strings
5. Command line arguments
6. Random access and binary files

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• The C++ input/output library is based on the concept of
streams.

• An input stream is a source of data.
• An output stream is a destination for data.
• The most common sources and destinations for data are

the files on your hard disk.
– You need to know how to read/write disk files to work with large

amounts of data that are common in business, administrative,
graphics, audio, and science/math programs

Reading and Writing Files

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Streams: An Example

This is a stream of characters. It could be from
the keyboard or from a file. Each of these is
just a character - even these: 3 -23.73 which,
when input, can be converted to: ints or doubles
or whatever type you like.
(that was a '\n' at the end of the last line)
&*@&^#!%#$ (No, that was –not- a curse!!!!!!!!!!
¥1,0000,0000 (price of a cup of coffee in Tokyo)
Notice that all of this text is very plain - No
bold or green of italics – just characters – and
whitespace (TABs, NEWLINES and, of course... the
other one you can’t see: the space character:
(another '\n')
(&& another) (more whitespace)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The stream you just saw is a plain text file.
No formatting, no colors, no video or music

(or sound effects).

A program can read these sorts of plain text streams of
characters from the keyboard, as has been done so far
with cin.

Reading and Writing Streams

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

You can also read and write files stored on your hard disk:

• plain text files
• binary information (a binary file)

– Such as images or audio recording

To read/write files, you use variables of the stream types:

ifstream for input from plain text files.
ofstream for output to plain text files.
fstream for input and output from binary files.

You must #include <fstream>

Reading and Writing Disk Files

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 To read anything from a file stream,

you need to open the stream.
(The same for writing.)

Opening associates the variable name with the file name.

After the file is open, you refer to it ONLY by the stream
variable name.

Opening a Stream

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

ifstream in_file;
in_file.open("input.txt"); //filename is input.dat

An alternative shorthand syntax combines the 2 statements:

ifstream in_file(“input.txt”);

As your program runs and tries to find this file, it WILL ONLY LOOK IN
THE DIRECTORY (FOLDER) IT IS LOCATED IN!

That is a common source of errors. If the desired file is not in the
executing program’s folder, the full file path must be specified.

Code for Opening Streams

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved

File names can contain directory path information, such as:

UNIX
in_file.open("~/nicework/input.dat");

Windows
in_file.open("c:\\nicework\\input.dat");

When you specify the file name as a string literal, and the name
contains backslash characters (as in Windows),
you must supply each backslash twice
to avoid having unintended escape characters in the string.

 \\ becomes a single \ when processed by the compiler.

File Path Names

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 If the filename comes from the user, you will store it in a
string. If you use a C-string (char array), the open()

function works fine.

If you use a C++ string, some older library versions require
you to convert it to a C-string using c_str() as the

argument to open():

cout << "Please enter the file name:";
string filename;
cin >> filename;
ifstream in_file;
in_file.open(filename.c_str());

When the File Name is in a C++ string variable

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Opening a Stream, Filename is a char[] array

cout << "Please enter the file name:";
char filename[80];
cin >> filename;
ifstream in_file;
in_file.open(filename);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 When the program ends,
all streams that you have opened

will be automatically closed.

You can manually close a stream with the
close member function:

in_file.close();

Manually closing a stream is only necessary
if you want to re-use the same stream variable for a different
file, or want to switch from input to output on the same file.

Closing a Stream

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 You already know how to read and write using files – it is the
same syntax as with cin, which is an istream also.

string name;
double value;
in_file >> name >> value;

Reading from a Stream: Use >>

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The >> operator returns a “not failed” condition,
allowing you to combine an input statement and a test.

A “failed” read yields a false
and a “not failed” read yields a true.

if (in_file >> name >> value)
{
 // Process input
}

To read the entire file, use a loop:

while (in_file >> name >> value)
{
 // Process input
}

Reading from a Stream, Testing for Failure

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 The open method also sets a “not failed” condition.
 It is a good idea to test for failure immediately:

in_file.open(filename.c_str());
// Check for failure after opening
if (in_file.fail())
{

cout << “Error opening file: “ << filename
<< endl;
return -1;

}

Failing to Open

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 To write to a file: declare an ofstream variable, open the
file, check for failure, and then stream the data to the
ofstream with <<

ofstream out_file;
out_file.open("output.txt");
if (in_file.fail()) { return -1; }
out_file << name << " " << value << endl;

Writing to a Stream: Just Like cout <<

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

A Programming Example: Popular Names

The Social Security Administration publishes
lists of the most popular baby names @
http://www.ssa.gov/OACT/babynames/.

A query of the 1000 most popular names for
the 1990s yields the screen shown here:

We saved the data as text, and pasted it into
the book companion code babynames.txt
file.

http://www.ssa.gov/OACT/babynames/

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Each line in the file contains seven entries:
• The rank (from 1 to 1,000)
• The name, frequency, and percentage of the male name of that rank
• The name, frequency, and percentage of the female name of that rank

An example line from the file:
10 Joseph 260365 1.2681 Megan 160312 0.8

File Structure

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Sample line: 10 Joseph 260365 1.2681 Megan 160312 0.8

We will display the top 50% of the names stored in the file.

To process each line, we first read the rank:
int rank;
in_file >> rank;

Next we read three values for that boy’s name:
string name;
int count;
double percent;
in_file >> name >> count >> percent;

Then we read the 3 values for the girl data.

Let's make a helper function (process_name) to do the 3 reads.

Baby Names Program Planning

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

 To stop processing after reaching 50%, we could add up the
frequencies and stop when they reach 50%.

 However, it is simpler to have “total” variables for boys and
girls, initialized with 50.

 Then we’ll subtract the frequencies as we read them and
stop when the total reaches 0.

Reading or writing a file modifies the stream variable, as it
counts the number of characters read or written so far.

For that reason, you must always make stream parameter
variables reference parameters.

Loop Control, and Reference Parameters for Functions

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Baby Names: Code Part 1
// sec01/babynames.cpp
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
/**
Reads name information, prints the name if total >= 0, and
adjusts the total.
@param in_file the input stream
@param total the total percentage that should still be processed
*/
void process_name(ifstream& in_file, double& total)
{
 string name;
 int count;
 double percent;
 in_file >> name >> count >> percent;
 // Check for failure after each input
 if (in_file.fail()) { return; }
 if (total > 0) { cout << name << " "; }
 total = total - percent;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Baby Names: Code Part 2

int main()
{
 ifstream in_file;
 in_file.open("babynames.txt");
 // Check for failure after opening
 if (in_file.fail()) { return 0; }
 double boy_total = 50;
 double girl_total = 50;
 while (boy_total > 0 || girl_total > 0)
 {
 int rank;
 in_file >> rank;
 if (in_file.fail()) { return 0; }
 cout << rank << " ";
 process_name(in_file, boy_total);
 process_name(in_file, girl_total);
 cout << endl;
 }
 return 0;
}

Practice It: File I/O Basics

Define an input file stream variable
named in.

ifstream in; An ifstream object is an input file stream variable.

Associate the input file stream with a
file named in.txt.

in.open("in.txt"); The open function associates the input stream with the disk
file in.txt and opens it for reading.

Define a variable word; Use word to
read the first word from the file.

string word; in >> word; Simply use the same input operations with which you are already
familiar. The >> operator reads the next word.

Declare an output
file stream variable named out.

ofstream out; The output file stream is an ofstream.

Use the output stream variable to
create a new file named out.txt.

out.open("out.txt"); Use the open function to create the desired text file.

Write a line consisting of the
word Hello to out.txt.

out << "Hello" << endl; To write to a file, use the << operator and the endlmanipulator that
you have already used with cout.

• Write code statements for the following.
– Answers are shown in tiny font which you may enlarge.

Practice It: File I/O and a Function

What is the effect of the following statements? (answers shown in tiny font
below)

ifstream in_file;
in_file.open("");
string word = "\n";
in_file >> word;

The statements have no effect.
Because there cannot be a file whose name is the empty string, in_file is set to the “failed” state, and no operations have any effect.

What is wrong with this function?
double sum(ifstream in)

{
double total = 0;
double input;
while (cin >> input)
{
total = total + input;

}

return total;
}

1. in should have been declared as a reference parameter.
2. The input statement should have been in >> input.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Practice It: Negative Image Code

1. Modify the imagemod.cpp program to turn the green
values of each pixel to red, the blue values to green, and
the red values to blue for a psychedelic effect.

• Hint: you only need to change one function!

2. If a BMP file stores a 100 × 100 pixel image, with the
image data starting at offset 64, what is the total file size?

• 10,000 bytes
• 30,000 bytes
• 30,064 bytes
• 40,000 bytes

Answer: 30,064 bytes. We need 3 × 100 bytes for each scan line. There is no padding because this number is divisible by 4. The total size = 3 × 100 × 100 + 64 = 30,064 bytes.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 1
Develop programs that read and write files.
• To read or write files, use variables of type fstream, ifstream, or
ofstream.
• When opening a file stream, supply the name of the file stored on disk.

ifstream infile;
infile.open(“filename.txt”);

• Read from a file stream with the same operations that you use with cin.
int num;
infile >> num;

• Write to a file stream with the same operations that you use with cout.
ofstream out(“filename.txt”);
out << num;

• Always use a reference parameter for a stream function argument,
because streams are modified as they are read or written

void process_name(ifstream& in_file, double& total)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 2

Be able to process text in files.
• When reading a string with the >> operator, the white space between
words is consumed.
• You can get individual characters from a stream and unget the last one.

in_file.get(ch);
if (isdigit(ch))
{
 in_file.unget(); // Put the digit back
 data >> n; // Read integer starting with ch
}

• You can read a line of input with getline() and then process it further.
There are 2 flavors of the function:

string line;
ifstream in_file("myfile.txt");
getline(in_file, line);

char cstring[100];
in_file.getline(cstring, 99);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 3

Write programs that neatly format their output.
• #include <iomanip>
• Use the setw manipulator to set the width of the next output.

out << setw(40) << left << country << setw(15) << right << density
<< endl;

• Use the fixed and setprecision manipulators to format
floating-point numbers with a fixed number of digits after the decimal
point.

out_file << fixed << x << endl << setprecision(2) << x;

Convert between strings and numbers.
• Use an istringstream to convert the numbers inside a string to
integers or floating-point numbers.

istringstream strm;
strm.str("January 24, 1973");
string month, comma;
int day, year;
strm >> month >> day >> comma >> year;

• Use an ostringstream to convert numeric values to strings.
Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 4

Process the command line arguments of a C++ program.
• Programs that start from the command line can receive the name of the
program and the command line arguments in the main function.

int main(int argc, char* argv[])

Develop programs that read and write binary files.
• Open the file with:

fstream strm;
strm.open("img.gif", ios::in | ios::out | ios::binary);

• You can access any position in a random access file by moving the file
pointer prior to a read or write operation.

strm.seekg(position); //read = get
char c = strm.get();
strm.seekp(position); // write = put
position = strm.tellg();
position = strm.tellp();

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

