
Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Nine: Classes

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• To understand the concept of encapsulation
• To master the separation of interface and

implementation
• To be able to implement your own classes
• To understand how constructors and member

functions act on objects
• To discover appropriate classes for solving

programming problems
• To distribute a program over multiple source files

Chapter Goals

Topic 1

1. Object oriented programming
2. Implementing a simple class
3. Specifying the public interface
4. Designing the data representation
5. Member functions
6. Constructors
7. Problem solving: tracing objects
8. Problem solving: discovering classes
9. Separate compilation

10. Pointers to objects
11. Problem solving: patterns for object data

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• You have learned to structure programs into functions.
– This is an excellent practice, but not good enough.
– As programs get larger, it becomes increasingly difficult to

maintain all the functions and separate datasets.

• To solve this problem, computer scientists invented
object-oriented programming
– tasks are solved by collaborating objects.
– An object is a set of data plus functions that manipulate the

data
– A "class" is a blueprint or template for an object with data

members and member functions.

• Did you know that you already are an Object Oriented
Programmer?
– string,cin,cout,streams are all classes or objects

Object-Oriented Programming

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Problem with Functional Programming

Functional programming is what you
have done (mostly) so far, with a bunch

of functions operating on a bunch of
data, linked together only by your

documentation and planning.

When some part of the data
needs to be changed:

to improve performance
or to add new capabilities,

a large number of functions
will have to be modified, and there is

no mechanism to ensure
correctness

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Computer scientists noticed that functions
work on related data so they invented:

Objects
 where data and the functions that work with them are bundled

together.

 The C++ language syntax rules guarantee that changes to the
class (object) data structure will be matched by changes in

the built-in functions.

And these changes are "under the hood", hidden from users of
your code. This hiding is known as "encapsulation".

Objects to the Rescue

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Some new terminology.

The data stored in an object are called:

data members

The functions that work on data
members are:

member functions

The list of member functions is the
public interface of the class.

Object Terminology

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

When you use string or stream objects, you did not know
their data members.

Encapsulation means that they are hidden from you.
But you were allowed to call member functions

 such as substr, and you could use operators
such as [] or >>

(which are actually functions).

You were given an
interface

to the object.

Encapsulation and the Interface

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

A class describes a set of objects
with the same behavior.

You would create the Car class to
represent cars as objects.

To define a class,
you must specify the behavior

by providing implementations for the
member functions,

and by defining the data members for
the objects

Classes

Topic 2

1. Object oriented programming
2. Implementing a simple class
3. Specifying the public interface
4. Designing the data representation
5. Member functions
6. Constructors
7. Problem solving: tracing objects
8. Problem solving: discovering classes
9. Separate compilation

10. Pointers to objects
11. Problem solving: patterns for object data

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Implementing a Simple Class

• Let's make a class that models a tally counter
– mechanical device that is used to count

• for example, to find out how many people board a bus

• When the operator pushes a button, the counter value
advances by one.
– We model this operation with a count function.

• A counter has a display to show the current value
– we use a get_value function instead.

• A counter has another button to reset the count to 0
– We use a reset function to model it.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Code for the Tally Counter Class: Interface

• To define the structure of a fully fledged class, we use syntax very
similar to what we used with data-only classes.

class Counter
{
public:
 void reset();
 void count();
 int get_value() const;
private:
 int value;
};

• In the public: area are the function prototype statements.
– These are the "interface" of the class that can be used in main

• In the private: area are the data members
• By convention, we name our classes starting with a Capital letter

CamelCase Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Code for the Tally Counter Class: Functions

• We define the member functions immediately after the interface
– They must be denoted as member functions by prefixing the function name

with the class name followed by 2 colons:
void Counter::count()
{

value++;
}
void Counter::reset()
{

value = 0;
}
int Counter::get_value() const
{
 return value;
}

• The get_value() member function is required so that users can know the
count
– Users are NOT PERMITTED to access the private: value variable

• Only member functions can access private data
Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

Code for the Tally Counter Class: main
int main() //define and use 2 Counter objects to test class
{
 Counter tally;
 tally.reset();
 tally.count();
 tally.count();
 int result = tally.get_value();
 cout << "Value of tally: " << result << endl;
 tally.count();
 tally.count();
 result = tally.get_value();
 cout << "Value of tally: " << result << endl;

 Counter concert_counter;
 concert_counter.reset();
 concert_counter.count();
 concert_counter.count();
 concert_counter.count();
 result = concert_counter.get_value();
 cout << "Value of concert_counter: " << result << endl;
 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Class Debrief

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

• Each object has its own private data
members
– As shown in Figure 2

• Member functions are called with the dot
notation, just like they were with the string
classes

tally.reset();
concert_counter.reset();
concert_counter.count();

• Member functions which do not modify data
have the word const as the last word of
their prototype
– int Counter::get_value()
const

– These are called "accessor" functions

Practice It: A Bug Class

Fill in the code below for a class Bug, to model a bug climbing a
pole.

– Each time the up() member function is called, the bug
climbs 10 cm.

• Whenever it reaches the top of the pole (at 100 cm), it
slides back to the bottom.

– Also implement a member function reset() that starts the
Bug at the bottom

– and a member function int get_position that returns
the current position

– See the textbook, Ch. 9 Section 2 Self-check 4, for the
main() code to test the class.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Practice It: A Bug Class
#include <iostream>
using namespace std;
class Bug
{
public:

...
private:

int position = 0;
};

int Bug::get_position() const
{ ...}

void Bug::reset()
{ ...}

void Bug::up() // bug climbs 10 cm, and @ 100,
{ ...} // resets back to position 0

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

