
Topic 3

1. Object oriented programming
2. Implementing a simple class
3. Specifying the public interface
4. Designing the data representation
5. Member functions
6. Constructors
7. Problem solving: tracing objects
8. Problem solving: discovering classes
9. Separate compilation

10. Pointers to objects
11. Problem solving: patterns for object data

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

We will design a cash register class, starting with the public
interface. The interface consists of all member functions that
a user of the class may need.

By observing a real cashier working, we realize we need
member functions to do the following:

• Clear the cash register to start a new sale.
• Add the price of an item.
• Get the total amount owed and the count
 of items purchased.

Specifying the Public Interface of a Class

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

To define a class you write:

Class Definition Syntax

class NameOfClass
{
public:
 // the public interface
private:
 // the data members
};

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

class CashRegister
{
public:
 void clear();
 void add_item(double price);
 double get_total() const;
 int get_count() const;
private:
 // data members will go here
};

It is legal to declare the private members before the public section, but most
programmers place the public section first.

It is also legal to have private functions and public data members, but these
rarely are appropriate.

CashRegister class definition

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

There are two kinds of member functions:

• Mutator: modifies the data members of the object. For
example,
void clear();

• Accessor: does not modify data members. For
example,

 double get_total() const;

Member Functions: Accessors and Mutators

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

This statement will print the current total:

Accessors

cout << register1.get_total() << endl;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error: (Shown in small font, enlarge to see)

Can you find the error?

class MysteryClass
{
public:
 ...
private:
 ...
} // ERROR: Forgot semicolon

int main()
{

 ...
}

Topic 4

1. Object oriented programming
2. Implementing a simple class
3. Specifying the public interface
4. Designing the data representation
5. Member functions
6. Constructors
7. Problem solving: tracing objects
8. Problem solving: discovering classes
9. Separate compilation

10. Pointers to objects
11. Problem solving: patterns for object data

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Data Representation

 Let’s continue with the design of CashRegister.

 Each CashRegister object has member functions
get_count and get_total,

so it must store the item count of the sale that is rung up.

It must either store all entered prices (as an array) and
compute the total in the function call, or it must store the

total.

Since the latter is simpler and adequate, we'll just store the
total.

The Complete Cash Register Interface, with Data

class CashRegister
{
public:
 void clear();
 void add_item(double price);
 double get_total() const;
 int get_count() const;
private:
 int item_count;
 double total_price;
};

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Example of Two CashRegister Objects with Data Members

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Encapsulation Motivation

Because the data members are private, this won’t compile:
int main()
{
 ...
 cout << register1.item_count;
 // Error—use get_count() instead
}

The encapsulation mechanism guarantees:
1. We can write the mutator for item_count so that item_count
cannot be set to a negative value.

If item_count were pubic, it could be directly set to a negative
value by some misguided (or worse, devious) programmer.

2. If we need to change or improve implementation details later, these
should not affect users of the public class interface.

Topic 5

1. Object oriented programming
2. Implementing a simple class
3. Specifying the public interface
4. Designing the data representation
5. Member functions
6. Constructors
7. Problem solving: tracing objects
8. Problem solving: discovering classes
9. Separate compilation

10. Pointers to objects
11. Problem solving: patterns for object data

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Implementing the Member Functions

Now we know what the interface does,
and what the data members are,

 what is the next step?

Implementing the member functions.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

NOT a Member Function

void add_item(double price)
{
 item_count++;
 total_price = total_price + price;
}

Unfortunately this is NOT the add_item member function:
It is a separate function, just like you used to write.

It has no connection with the CashRegister class unless we
prefix the function name in the header with

CashRegister::

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Member Functions

void CashRegister::add_item(double price)
{
 item_count++;
 total_price = total_price + price;
}

int CashRegister::get_count() const
{
 return item_count;
}

/* NOTE that we do NOT declare the item_count or
total_price variables in the member functions –
they only get declared in the Class interface
definition */

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Implicit Parameters
In the member function call (in main):

register1.add_item(1.95);

 The variable register1 is an implicit parameter to the member
function. But you don’t include it in your code:

void CashRegister::add_item(double price)
{
 item_count++;
 total_price = total_price + price;
}

Whenever a member function accesses a variable in the Class’s data,
the compiler automatically includes the implicit parameter and a dot
(shown fictitiously in italics below):

void CashRegister::add_item(double price)
{
 implicit parameter.item_count++;
 implicit parameter.total_price =
 implicit parameter.total_price + price;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Implicit Parameters vs. Explicit

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Calling a Member Function from a Member Function

We have already written the add_item member function

Let’s add a member function to add multiple copies of the same
item to the total. This new function calls the single-unit

function via a loop:

void CashRegister::add_items(int qnt, double
prc)

{
 for (int i = 1; i <= qnt; i++)
 {
 add_item(prc);
 }
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Calling a Member Function from Another: no Dot

When one member function calls another member function
on the same object, you do not use the dot notation.

And, of course, the object remains an implicit parameter for
both functions.

void CashRegister::add_items(int qnt, double
prc)

{
 for (int i = 1; i <= qnt; i++)
 {
 add_item(prc);
 }
}

The Cash Register Program, Part 1
#include <iostream>
#include <iomanip>
using namespace std;

class CashRegister
{
public:
 void clear(); //Clears the item count and the total

 void add_item(double price);//adds an item to this cash
//register and updates the total price

 double get_total() const; //returns the total amount
//of the current sale

 int get_count() const; //return the item count of
//the current sale

private:
 int item_count;
 double total_price;
};

The Cash Register Program , Part 2

 void CashRegister::clear() {
 item_count = 0;
 total_price = 0;
 }

 void CashRegister::add_item(double price) {
 item_count++;
 total_price = total_price + price;
 }

 double CashRegister::get_total() const {
 return total_price;
 }

 int CashRegister::get_count() const {
 return item_count;
 }

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Cash Register Program, Part 3 (NOT a member function)
/*
This function displays the item count and total

price of a cash register.
This is NOT a member function of the class!
A CashRegister object must be passed as an
explicit parameter – it is not implicit.
*/

void display(CashRegister reg)
{

cout << reg.get_count() << " $“
<< fixed << setprecision(2)
<< reg.get_total() << endl;

}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The Cash Register Program, main() and the output
int main()
{
 CashRegister register1;
 register1.clear();
 register1.add_item(1.95);
 display(register1);
 register1.add_item(0.95);
 display(register1);
 register1.add_item(2.50);
 display(register1);
 return 0;
}

Program Run Output:
Item 1: $1.95
Item 2: $2.90
Item 3: $5.40

Practice It: The CashRegister

• Trace through the function calls of
main(), filling in this diagram of the
values of register1’s data members:

int main()
{
 CashRegister register1;
 register1.clear();
 register1.add_item(1.95);
 display(register1);
 register1.add_item(0.95);
 display(register1);
 register1.add_item(2.50);
 display(register1);
 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

total_price item_count

Practice It: The CashRegister

• Trace through the function calls of
main(), filling in this diagram of the
values of register1’s data members:

int main()
{
 CashRegister register1;
 register1.clear();
 register1.add_item(1.95);
 display(register1);
 register1.add_item(0.95);
 display(register1);
 register1.add_item(2.50);
 display(register1);
 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

total_price item_count

0 0

Practice It: The CashRegister

• Trace through the function calls of
main(), filling in this diagram of the
values of register1’s data members:

int main()
{
 CashRegister register1;
 register1.clear();
 register1.add_item(1.95);
 display(register1);
 register1.add_item(0.95);
 display(register1);
 register1.add_item(2.50);
 display(register1);
 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

total_price item_count

0 0

1.95 1

Practice It: The CashRegister

• Trace through the function calls of
main(), filling in this diagram of the
values of register1’s data members:

int main()
{
 CashRegister register1;
 register1.clear();
 register1.add_item(1.95);
 display(register1);
 register1.add_item(0.95);
 display(register1);
 register1.add_item(2.50);
 display(register1);
 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

total_price item_count

0 0

1.95 1

2.90 2

Practice It: The CashRegister

• Trace through the function calls of
main(), filling in this diagram of the
values of register1’s data members:

int main()
{
 CashRegister register1;
 register1.clear();
 register1.add_item(1.95);
 display(register1);
 register1.add_item(0.95);
 display(register1);
 register1.add_item(2.50);
 display(register1);
 return 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

total_price item_count

0 0

1.95 1

2.90 2

5.40 3

Programming Tip: const Correctness (1)

You should declare all accessor functions with the const
reserved word.

For example, suppose you write:

class CashRegister
{
 int get_count(); // Bad — no const
 ...
};

When you compile your code, no error is reported.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Programming Tip: const Correctness (2)
But suppose that another programmer uses your
CashRegister class in a function:
void display_all_counts(const CashRegister
registers[]) {

for (int i = 0; i < NREGISTERS; i++) {
cout << registers[i].get_count();

}
}
The programmer declares the registers[] parameter as
const.
But the call registers[i].get_count() will not
compile. Because CashRegister::get_count() is not
tagged as const, the compiler suspects that the call may
modify registers[i].

