
Topic 6

1. Object oriented programming
2. Implementing a simple class
3. Specifying the public interface
4. Designing the data representation
5. Member functions
6. Constructors
7. Problem solving: tracing objects
8. Problem solving: discovering classes
9. Separate compilation

10. Pointers to objects
11. Problem solving: patterns for object data

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Constructors

 A constructor is a member function that
initializes the data members of an object.

The constructor is automatically
called whenever an object is created.

CashRegister register1;

(You don’t see the function call nor the
definition in the class, it but it’s there.)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Constructors: Motivation

 By supplying a constructor, you can ensure that all data
members are properly set

before any member functions act on an object.

To understand the importance of constructors, consider:

CashRegister register1;
register1.add_item(1.95);
int count = get_count(); // May not be 1

 Notice that the programmer forgot to
call clear before adding items.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Constructor Code

You declare constructor functions in the class definition.
There must be no return type, not even void.
The name of the constructor must be the same as the class:

class CashRegister
{
public:
 CashRegister(); // A constructor
...
};

The constructor definition resembles other member
functions:

CashRegister::CashRegister()
{
 item_count = 0;
 total_price = 0;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Default Constructors

If you do not write a constructor for your class, the compiler
automatically generates one for you, which does nothing but

allocate memory space for the data members.
The compiler does NOT provide safe initial data values,
EXCEPT that string members are initialized to the empty

string.

Default constructors are called when you define an object
and do not specify any parameters for the construction.

CashRegister register1;

Notice that you do NOT use an empty set of parentheses when
you call the constructor followed by a new identifier to create

the object.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Constructors with Parameters

 Constructors can have parameters, and can be
overloaded :

class BankAccount
{
public:
 // “Default” constructor: Sets balance=0
 BankAccount();
 // Sets balance to initial_balance
 BankAccount(double initial_balance);
 // . . . Member functions omitted
private:
 double balance;
};

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Overloaded Constructors

 When the same name is used for more than one function,
then the functions are called overloaded. The compiler

determines which to use, based on the parameter list of the
call.

When you construct an object, the compiler chooses the
constructor that matches the parameters that you supply:

BankAccount joes_account;
 // Uses default constructor
BankAccount lisas_account(499.95);
 // Uses BankAccount(double) constructor

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Common Error: How (NOT) to Use the Constructor to Reset

You cannot call a constructor with dot notation to “reset” an
object.

CashRegister register1;
...
register1.CashRegister(); // Syntax Error

The correct way to reset an object is to construct a new
one and assign it to the old:

register1 = Cashregister(); //creates an
// unnamed object, then copies it to register1

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Initialization Lists

 When you construct an object whose data members
are themselves objects, those objects are

constructed by their class’s default constructor.

However, if a data member belongs to a class
without a default constructor,

you need to invoke the data member’s constructor explicitly.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Initialization Lists: Example (1)

A class to represent an item might not have a default constructor:

class Item:
public:
 Item(string item_descript, double item_price);
 // No other constructors
 ...
};

The Order class has an Item object as data:
class Order
{
public:
 Order(string customer_name, string
item_descript, double item_price);

...
private:
 Item article;
 string customer;
};

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Initialization Lists Example (2)

 The Order constructor must call the Item constructor.

This is done in the initializer list.

The initializer list goes after a colon, and before the
opening brace of the constructor by putting the name of the
data member followed by their construction arguments:

Order::Order(string customer_name,
string item_description, double item_price)

 : article(item_description, item_price)
 {
 customer = customer_name;
}

Initialization Lists Example (3)

 Any other data members can also be initialized in the initializer
list by putting their initial values in parentheses after their
name, just like the class type data members.
These must be separated by commas:

Order::Order(string customer_name,
 string item_description,
 double item_price)
 : article(item_description, item_price),
 customer(customer_name)
{
}

 Notice there’s nothing to do in the body of the constructor now.

Initialization Lists Example (4)
#include<iostream>
using namespace std;

class Point {
private:
 int x;
 int y;
public:
 Point(int i = 0, int j = 0):x(i), y(j) {}
 /* The above use of Initializer list is optional as the
 constructor can also be written as:
 Point(int i = 0, int j = 0) {
 x = i;
 y = j;
 } */

 int getX() const {return x;}
 int getY() const {return y;}
};

int main() {
 Point t1(10, 15);
 cout<<"x = "<<t1.getX()<<", ";
 cout<<"y = "<<t1.getY();
 return 0;
}

/* OUTPUT:
 x = 10, y = 15 */

C++ 11 Adds Uniform Initialization Syntax

There are several syntactic variations to initialize variables:
double price = 19.25;
int squares[] = { 1, 4, 9, 16 };
BankAccount lisas_account(499.95);

C++ 11 introduces a uniform syntax, using braces and
no equal sign, like this:

double price { 19.25 };
int squares[] { 1, 4, 9, 16 };
BankAccount lisas_account { 499.95 };

Use empty braces for default initialization:
double balance {}; // Initialized with zero
BankAccount joes_account {};
// Uses default constructor

Don’t expect to see this change adopted by most C++
programmers soon. Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

