
Topic 9

1. Object oriented programming
2. Implementing a simple class
3. Specifying the public interface
4. Designing the data representation
5. Member functions
6. Constructors
7. Problem solving: tracing objects
8. Problem solving: discovering classes
9. Separate compilation

10. Pointers to objects
11. Problem solving: patterns for object data

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Separate Compilation

 For small programs, all your code fits in a single file.

 When your programs get larger or you work in a team,
you will want to split your code into separate source
files, because:

 1. You don't want to wait for the compiler to keep
translating code that doesn’t change. If your code is
distributed over several source files, then only those files
that you changed need to be recompiled.

2. On a team project, code is broken up so that each
programmer can work on his/her files without conflict.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Separate Compilation: Header Files

 If your program is composed of multiple files,
some of these files will define data types or

functions that are needed in other files.

There must be a path of communication between the files.

In C++, that communication happens through
the inclusion of header files.

Yes, #include

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Separate Compilation: What to include

 The code will be in two kinds of files:

header files (filename.h)
(which will be #include-ed)

source files (filename.cpp)
(which we usually do not #include)

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Separate Compilation: Files

A header file contains

• the interface:
– Definitions of classes.
– Definitions of constants.
– Declarations of nonmember functions.

A source file contains

• the implementation:
– Definitions of member functions.
– Definitions of nonmember functions.
– May or may not contain main()

Separate Compilation: Example

 cashregister.h
the interface – the class definition

cashregister.cpp
the implementation – all the member function definitions

In the next slide the header file, cashregister.h
notice the #ifndef … #define at the top.
There is an ending #endif at the end of the file.
This makes sure the header is only included once, to

prevent compiler errors such as "redefined":

Separate Compilation: cashregister.h
#ifndef CASHREGISTER_H
#define CASHREGISTER_H

class CashRegister {
public:

…
private:
 int item_count;
 double total_price;
};

#endif
You include this header file whenever the definition

of the CashRegister class is required.
Since this file is not a standard header file, you must enclose its name in

quotes, not <...>, when you include it, like this:

#include "cashregister.h"

Separate Compilation: The Class .cpp file

Notice that the implementation file #includes its header file:

#include "cashregister.h"

void CashRegister::clear() {
 item_count = 0;
 total_price = 0;
}
void CashRegister::add_item(double price) {

item_count++;
total_price = total_price + price;

}
double CashRegister::get_total() const {
 return total_price;
}

int CashRegister::get_count() const {
 return item_count;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Separate Compilation: The main() Program (1)

 #include <iostream>
#include <iomanip>
#include "cashregister.h"
using namespace std;

/* Displays the item count and total
 price of a cash register. */

void display(CashRegister reg)
{
 cout << reg.get_count() << " $“
 << fixed << setprecision(2)
 << reg.get_total() << endl;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Separate Compilation: The main() Program (2)

int main()
{
 CashRegister register1;
 register1.clear();
 register1.add_item(1.95);
 display(register1);
 register1.add_item(0.95);
 display(register1);
 register1.add_item(2.50);
 display(register1);
 return 0;
}

• In a command-line compiler, you can supply a “makefile”,
which will list all the .cpp and .h files and the folder
structure that contains them

• Then you run the “make” utility to build the
executable program

• We will learn how to use the make utility in Project 3 and
in the remaining labs.

Separate Compilation: "makefile" and the "make" utility

