
 STATIC VARIABLES

Scope of Variables VS Their Lifetime:
Scope and lifetime usually coincide, but
static variables persist even after they
are out of scope - program lifetime!

Using the static keyword on local
variables changes them to static duration. A
static (duration) variable is one that retains
its value even after the scope in which it has
been created has been exited.
Static variables are only created and
initialized once, and then they persist
throughout the execution of the program.

void incrementAndPrint()
{
 int value = 1; // automatic duration
 ++value;
 std::cout << value << '\n';
} // value is destroyed here

int main()
{
 incrementAndPrint();
 incrementAndPrint();
 incrementAndPrint();
}

>> 2
>> 2
>> 2

void incrementAndPrint() {
 static int s_value = 1; // static duration
 ++value;
 std::cout << s_value << '\n';
} // s_value is not destroyed here,

// but becomes inaccessible

int main() {
 incrementAndPrint();
 incrementAndPrint();
 incrementAndPrint();
}

>> 2
>> 3
>> 4

Genady Maryash
s_value;

Genady Maryash
S();

Genady Maryash
S();

Genady Maryash
S();

One of the most common uses for static
duration local variables is for unique identifier
generators.
When dealing with a large number of similar
objects within a program, it is often useful to
assign each one a unique ID.
This is very easy to do with a static duration
local variable:
int generateID() {
 static int s_itemID = 0;
 return s_itemID++; //returns
//new value and increments itemID
}

The first time this function is called, it returns 0

The second time, it returns 1

Each time it is called, it returns a number one
higher than the previous time it was called

You can assign these numbers as unique IDs
for your objects

However, because itemID is a local
variable, it can not be “tampered with” by other
functions.

Static variables offer some of the benefit of
global variables:

they do not get destroyed until the end of
the program…

...while limiting their visibility to block
scope

This makes them much safer for use
than global variables.

