
Implementing an Employee Hierarchy for Payroll Processing WE10-1

WorkEd ExamplE 10.1

Implementing an Employee Hierarchy for payroll processing

problem Statement Your task is to implement payroll
processing for different kinds of employees.
• Hourly employees get paid an hourly rate, but if they work more than

40 hours per week, the excess is paid at “time and a half”.
• Salaried employees get paid their salary, no matter how many hours

they work.
• Managers are salaried employees who get paid a salary and a bonus.
Your program should compute the pay for a collection of
employees. For each employee, ask for the number of hours worked in a given week, then
display the wages earned.

Step 1 List the classes that are part of the hierarchy.

In our case, the problem description lists three classes: HourlyEmployee, SalariedEmployee, and
Manager. We need a class that expresses the commonality among them: Employee.

Step 2 Organize the classes into an inheritance hierarchy.

Here is the UML diagram for our classes.

Hourly
Employee

Salaried
Employee

Manager

Employee

Step 3 Determine the common responsibilities of the classes.

In order to discover the common responsibilities, write pseudocode for processing the objects.

For each employee
 Print the name of the employee.
 Read the number of hours worked.
 Compute the wages due for those hours.

We conclude that the Employee base class has these responsibilities:

Get the name.
Compute the wages due for a given number of hours.

© Tom Horyn/iStockphoto.

Jose Luis Pelaez Inc./Getty Images, Inc.

Big C++, Late Objects, 3e, Cay Horstmann, © 2018 John Wiley and Sons, Inc. All rights reserved.

WE10-2 Chapter 10

Step 4 Decide which functions are overridden in derived classes.

In our example, there is no variation in getting the employee’s name, but the salary is com-
puted differently in each derived class. Therefore, we will declare the weekly_pay member func-
tion as virtual in the Employee class.

class Employee
{
public:
 Employee();
 string get_name() const;
 virtual double weekly_pay(int hours_worked) const;
 . . .
private:
 . . .
};

Step 5 Define the public interface of each class.

We will construct employees by supplying their name and salary information.

HourlyEmployee(string name, double wage);
SalariedEmployee(string name, double salary);
Manager(string name, double salary, double bonus);

These constructors need to set the name of the Employee base object. We will supply an Employee
member function set_name for this purpose. In this simple example, no further member func-
tions are required.

Step 6 Identify data members.

List the data members for each class. If you find a data member that is common to all classes,
be sure to place it in the base of the hierarchy.

All employees have a name. Therefore, the Employee class should have a data member name.
(See Figure 7.) What about the salaries? Hourly employees have an hourly wage, whereas sala-
ried employees have an annual salary. While it would be possible to store these values in a data
member of the base class, it would not be a good idea. The result ing code, which would need to
make sense of what that number means, would be complex and error-prone.

HourlyEmployee SalariedEmployee

Manager

Employee

set_name()
get_name()
weekly_pay()

name

weekly_pay()

hourly_wage

weekly_pay()

annual_salary

weekly_pay()

weekly_bonus

Figure 7 Employee Payroll Hierarchy

Big C++, Late Objects, 3e, Cay Horstmann, © 2018 John Wiley and Sons, Inc. All rights reserved.

Implementing an Employee Hierarchy for Payroll Processing WE10-3

Step 7 Implement constructors and member functions.

In a derived-class constructor, we need to remember to set the data members of the base class.

SalariedEmployee::SalariedEmployee(string name, double salary)
{
 set_name(name);
 annual_salary = salary;
}

Here we use a member function. Special Topic 10.1 shows how to invoke a base-class con-
structor. We use that technique in the Manager constructor:

Manager::Manager(string name, double salary, double bonus)
 : SalariedEmployee(name, salary)
{
 weekly_bonus = bonus;
}

The weekly pay needs to be computed as specified in the problem description:

double HourlyEmployee::weekly_pay(int hours_worked) const
{
 double pay = hours_worked * hourly_wage;
 if (hours_worked > 40)
 {
 pay = pay + ((hours_worked - 40) * 0.5) * hourly_wage;
 }
 return pay;
}

double SalariedEmployee::weekly_pay(int hours_worked) const
{
 const int WEEKS_PER_YEAR = 52;
 return annual_salary / WEEKS_PER_YEAR;
}

In the case of the Manager, we need to call the version of weekly_pay from the SalariedEmployee
base class:

double Manager::weekly_pay(int hours) const
{
 return SalariedEmployee::weekly_pay(hours) + weekly_bonus;
}

Step 8 Allocate objects on the free store and process them.

In our sample program, we populate a vector of pointers and compute the weekly salaries:

vector<Employee*> staff;
staff.push_back(new HourlyEmployee("Morgan, Harry", 30));
. . .
for (int i = 0; i < staff.size(); i++)
{
 cout << "Hours worked by " << staff[i]->get_name() << ": ";
 int hours;
 cin >> hours;
 cout << "Salary: " << staff[i]->weekly_pay(hours) << endl;
}

worked_example_1/salaries.cpp

1 #include <iomanip>
2 #include <iostream>
3 #include <vector>

Big C++, Late Objects, 3e, Cay Horstmann, © 2018 John Wiley and Sons, Inc. All rights reserved.

WE10-4 Chapter 10

4
5 using namespace std;
6
7 /**
8 An employee with a name and a mechanism for computing weekly pay.
9 */

10 class Employee
11 {
12 public:
13 /**
14 Constructs an employee with an empty name.
15 */
16 Employee();
17
18 /**
19 @param employee_name the name of this employee
20 */
21 void set_name(string employee_name);
22
23 /**
24 @return the name of this employee
25 */
26 string get_name() const;
27
28 /**
29 Computes the pay for one week of work.
30 @param hours_worked the number of hours worked in the week
31 @return the pay for the given number of hours
32 */
33 virtual double weekly_pay(int hours_worked) const;
34 private:
35 string name;
36 };
37
38 Employee::Employee()
39 {
40 }
41
42 void Employee::set_name(string employee_name)
43 {
44 name = employee_name;
45 }
46
47 string Employee::get_name() const
48 {
49 return name;
50 }
51
52 double Employee::weekly_pay(int hours_worked) const
53 {
54 return 0;
55 }
56
57 //..
58
59 class HourlyEmployee : public Employee
60 {
61 public:
62 /**
63 @param name the name of this employee

Big C++, Late Objects, 3e, Cay Horstmann, © 2018 John Wiley and Sons, Inc. All rights reserved.

Implementing an Employee Hierarchy for Payroll Processing WE10-5

64 @param wage the hourly wage
65 */
66 HourlyEmployee(string name, double wage);
67
68 virtual double weekly_pay(int hours_worked) const;
69 private:
70 double hourly_wage;
71 };
72
73 HourlyEmployee::HourlyEmployee(string name, double wage)
74 {
75 set_name(name);
76 hourly_wage = wage;
77 }
78
79 double HourlyEmployee::weekly_pay(int hours_worked) const
80 {
81 double pay = hours_worked * hourly_wage;
82 if (hours_worked > 40)
83 {
84 pay = pay + ((hours_worked - 40) * 0.5) * hourly_wage;
85 }
86 return pay;
87 }
88
89 //..
90
91 class SalariedEmployee : public Employee
92 {
93 public:
94 /**
95 @param name the name of this employee
96 @param salary the annual salary
97 */
98 SalariedEmployee(string name, double salary);
99

100 virtual double weekly_pay(int hours_worked) const;
101 private:
102 double annual_salary;
103 };
104
105 SalariedEmployee::SalariedEmployee(string name, double salary)
106 {
107 set_name(name);
108 annual_salary = salary;
109 }
110
111 double SalariedEmployee::weekly_pay(int hours_worked) const
112 {
113 const int WEEKS_PER_YEAR = 52;
114 return annual_salary / WEEKS_PER_YEAR;
115 }
116
117 //..
118
119 class Manager : public SalariedEmployee
120 {
121 public:
122 /**
123 @param name the name of this employee

Big C++, Late Objects, 3e, Cay Horstmann, © 2018 John Wiley and Sons, Inc. All rights reserved.

WE10-6 Chapter 10

124 @param salary the annual salary
125 @param bonus the weekly bonus
126 */
127 Manager(string name, double salary, double bonus);
128
129 virtual double weekly_pay(int hours) const;
130 private:
131 double weekly_bonus;
132 };
133
134 Manager::Manager(string name, double salary, double bonus)
135 : SalariedEmployee(name, salary)
136 {
137 weekly_bonus = bonus;
138 }
139
140 double Manager::weekly_pay(int hours) const
141 {
142 return SalariedEmployee::weekly_pay(hours) + weekly_bonus;
143 }
144
145 //..
146
147 int main()
148 {
149 vector<Employee*> staff;
150 staff.push_back(new HourlyEmployee("Morgan, Harry", 30));
151 staff.push_back(new SalariedEmployee("Lin, Sally", 52000));
152 staff.push_back(new Manager("Smith, Mary", 104000, 50));
153
154 for (int i = 0; i < staff.size(); i++)
155 {
156 cout << "Hours worked by " << staff[i]->get_name() << ": ";
157 int hours;
158 cin >> hours;
159 cout << "Salary: " << staff[i]->weekly_pay(hours) << endl;
160 }
161
162 return 0;
163 }

Big C++, Late Objects, 3e, Cay Horstmann, © 2018 John Wiley and Sons, Inc. All rights reserved.

