
WE4-4 Chapter 4   

  
WorkEd ExamplE 4.2

manipulating the pixels in an Image

A digital image is made up of pixels. Each pixel is a tiny 
square of a given color. In this Worked Example, we will 
use a Picture type that has member functions for loading 
an image and accessing its pixels. 

problem Statement Your task is to convert an image 
into its negative, turning white to black, cyan to red, 
and so on. The result is a negative image of the kind that 
old-fashioned film cameras used to produce.

Step 1 We provide you with a Picture type for manipulating images in the .png format. In order to use 
this type, you need to copy the files picture.cpp, picture.h, lodepng.cpp, and lodepng.h into the 
same folder as your source file, and you need to include them in the compilation. You can find 
these files in the ch04/worked_example_2 folder of the companion code.

You also need to include the picture.h file into your source file, with the statement

#include "picture.h"

Note that the header file name, picture.h, is surrounded by quotation marks, not angle brack-
ets, to indicate that you include a local file and not a system file.

To obtain a picture from a .png file, supply the file name like this:

Picture pic("queen-mary.png");

This statement defines a variable pic of type Picture that holds the pixels from the provided 
file.

Each pixel in the picture has an x- and y-coordinate, with 0 ≤ x < width and 0 ≤ y < height. 
The pixel with coordinates (0, 0) is in the top-left corner, and the y-axis points downward.

(0, 0)  x

y
width

he
ig

ht

Each pixel has an RGB color value that is composed of the three primary colors: red, green, 
and blue. Each primary color amount is given as an integer between 0 (primary color not pres-
ent) and 255 (maximum amount present). For example, a color with red value 255, green value 
0, and blue value 255 is a bright purple color called magenta.

Step 2 Once you have a picture, you can call member functions to find out about the picture, or to 
modify it. 

Here is what you can do:
• You can obtain the width and height of the picture by calling pic.width() and pic.height().
• You can get the red, green, and blue values of a pixel at a particular location by calling 

pic.red(x, y), pic.green(x, y), and pic.blue(x, y).
• You can set a pixel to any RGB color value by calling pic.set(x, y, red, green, blue).
• You can save the changes to a file: pic.save("result.png").
• You can add another picture to this picture—see Section 4.9.

© Tom Horyn/iStockphoto.

Cay Horstmann.

Big C++, Late Objects, 3e, Cay Horstmann, © 2018 John Wiley and Sons, Inc. All rights reserved.



Manipulating the Pixels in an Image  WE4-5

Instead of loading a picture from an image file, you can also start with a monochromatic 
picture:

Picture all_magenta(300, 200, 255, 0, 255); // Specify width, height, and RGB color

Step 3 Now consider the task of converting an image into its negative.

Cay Horstmann.

A pixel is turned into its negative like this:

int red = pic.red(x, y);
int green = pic.green(x, y);
int blue = pic.blue(x, y);
pic.set(x, y, 255 - red, 255 - green, 255 - blue);

We want to apply this operation to each pixel in the image. To process all pixels, we can use one 
of the following two strategies:

For each row
   For each pixel in the row
      Process the pixel.

or

For each column
   For each pixel in the column
      Process the pixel.

Because our pixel class uses x/y coordinates to access a pixel, it turns out to be more natural 
to use the second strategy. (In Chapter 6, you will encounter two-dimensional arrays that are 
accessed with row/column coordinates. In that situation, use the first form.)

To traverse each column, the x-coordinate starts at 0. Because there are pic.width() col-
umns, we use the loop

for (int x = 0; x < pic.width(); x++)

Once a column has been fixed, we need to traverse all y-coordinates in that column, starting 
from 0. There are pic.height() rows, so our nested loops are

for (int x = 0; x < pic.width(); x++)
{
   for (int y = 0; y < pic.height(); y++)
   {
      . . .
   }
}

The following program solves our image manipulation problem:

Big C++, Late Objects, 3e, Cay Horstmann, © 2018 John Wiley and Sons, Inc. All rights reserved.



WE4-6 Chapter 4   

worked_example_2/negative.cpp

1 #include "picture.h"
2 
3 int main()
4 {
5    Picture pic("queen-mary.png");
6    
7    for (int x = 0; x < pic.width(); x++)
8    {
9       for (int y = 0; y < pic.height(); y++)

10       {
11          int red = pic.red(x, y);
12          int green = pic.green(x, y);
13          int blue = pic.blue(x, y);
14          pic.set(x, y, 255 - red, 255 - green, 255 - blue);
15       }
16    }
17    pic.save("out.png");
18    return 0;
19 }

  

Big C++, Late Objects, 3e, Cay Horstmann, © 2018 John Wiley and Sons, Inc. All rights reserved.




