CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

Today's Topics

- For-loops
- range()
- Variables: ints and strings
- Lists

In Pairs or Triples...

Some review and some novel challenges:
1 \#Predict what will be printed:
2 for i in range(4):
3 print('The world turned upside down')
4 for j in $[0,1,2,3,4,5]$:
5 print(j)
6 for count in range(6):
7 print(count)
8 for color in ['red', 'green', 'blue']:
9 print(color)
10 for i in range(2):
11 for j in range(2):
12 print('Look around,')
13 print('How lucky we are to be alive!')

Python Tutor

```
#Predict what will be printed:
for i in range(4):
print('The world turned upside down')
for }j\mathrm{ in [0,1,2,3,4,5]:
    print(j)
for count in range(6):
    print(count)
for color in ['red', 'green', 'blue']:
    print(color)
for i in range(2):
    for j in range(2):
            print('Look around, ')
    print('How lucky we are to be alive!')
```


(Demo with pythonTutor)

Variables

- A variable is a reserved memory location for storing a value.
- Different kinds, or types, of values need different amounts of space:
- int: integer or whole numbers
- float: floating point or real numbers
- string: sequence of characters
- list: a sequence of items e.g. [3, 1, 4, 5, 9] or ['violet','purple','indigo']
- class variables: for complex objects, like turtles.

Variable Names

- There's some rules about valid names for variables.
- Can use the underscore (' - '), upper and lower case letters.
- Can also use numbers, just can't start a name with a number.
- Can't use symbols (like '+' or '*') since used for arithmetic.
- Can't use some words that Python has reserved for itself (like for). (List of reserved words in Think CS, §2.5.)

for-loop

$$
\text { for } \begin{array}{ll}
& \text { i in list: } \\
& \text { statement1 } \\
& \text { statement2 } \\
& \text { statement3 }
\end{array}
$$

where list is a list of items:

- stated explicitly (e.g. [1,2,3]) or
- generated by a function, e.g. range().

How to Think Like CS, §4.5

In Pairs or Triples...

Some review and some novel challenges:

1 \#Predict what will be printed:

2

```
for num in [2,4,6,8,10]:
    print(num)
```

sum $=0$
for x in range $(0,12,2)$: print (x)
sum $=$ sum $+\mathbf{x}$
10
11 print(x)
12
13 for c in "ABCD":
14 print(c)

Python Tutor

```
#Predict what will be printed:
for num in [2,4,6,8,10]:
    print(num)
sum = 0
for }x\mathrm{ in range(0,12,2):
    print(x)
    sum = sum + x
print(x)
for c in "ABCD":
    print(c)
```


range()

Simplest version:

- range(stop)
- Produces a list: $[0,1,2,3, \ldots$, stop- 1$]$
- For example, if you want the the list [$0,1,2,3, \ldots, 100$], you would write:
range(101)

range()

What if you wanted to start somewhere else:

- range(start, stop)
- Produces a list: [start,start+1,...,stop-1]
- For example, if you want the the list [10,11,...,20] you would write:
range $(10,21)$

What if you wanted to count by twos, or some other number:

- range(start, stop, step)
- Produces a list: [start,start+step,start+2*step...,last] (where last is the largest start +k *step less than stop)
- For example, if you want the the list [$5,10, \ldots, 50$] you would write:
range (5,51,5)

In summary: range()

The three versions:

- range (stop)
- range(start, stop)
- range(start, stop, step)

Standardized Code for Characters

American Standard Code for Information Interchange (ASCII), 1960. (New version called: Unicode).

ASCII TABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	-
1	1	[START OF HEADING]	33	21	$!$	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	,	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	I	105	69	,
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6 A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6 C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6 E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6 F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS, BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	\mathbf{X}	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	\mathbf{Y}	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5 A	Z	122	7 A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7 B	$\{$
28	1 C	[FILE SEPARATOR]	60	3C	$<$	92	5 C	1	124	7 C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	$>$	94	5E	ヘ	126	7E	\sim
31	1 F	[UNIT SEPARATOR]	63	3F	$?$	95	5 F	-	127	7F	[DEL]

Converting from Character to Code:

(There is an ASCII table on the back of today's lecture slip.)

- ord (c): returns Unicode (ASCII) of the character.
- Example: ord('a') returns 97.
- chr (x): returns the character whose Unicode is x.
- Example: chr (97) returns 'a'.

In Pairs or Triples...

Some review and some novel challenges:

1
for c in range $(65,90)$:
print(chr(c))

```
message = "I love Python"
```

newMessage = ""
for c in message:
print(ord(c)) \#Print the Unicode of each number
print(chr(ord(c)+1)) \#Print the next character
newMessage $=$ newMessage $+\operatorname{chr}(\operatorname{ord}(c)+1)$ \#add to the new message
print("The coded message is", newMessage)
word = "zebra"
codedWord = ""
for ch in word:
offset $=$ ord(ch) - ord('a') + 1 \#how many letters past ' a '
wrap $=$ offset \% 26 \#if larger than 26, wrap back to 0
newChar $=$ chr(ord('a') + wrap) \#compute the new letter
print(wrap, chr(ord('a') + wrap)) \#print the wrap \& new lett
codedWord $=$ codedWord + newChar \#add the newChar to the coded w
print("The coded word (with wrap) is", codedWord)

Python Tutor

```
#Predict what will be printed:
for c in range(65,90):
    print(chr(c))
message = "I
nemMessage = "
for e in message:
    print(chr(c)
    print(chr(ord(c)+1)),APrint the next character
    newlessage = newMessage + chr(ord(c)+1) #add to the new messoge
print("The coded message is", newMlessage)
word - "zebra"
15 codedmord
1 6 \text { for ch in word:}
17 offset =ord(ch) = ord(' 'a') + 1 #how many letters past '
    wrap = offset & 26 %1f targer than 26, wrap back to &
    \ nenChar = chr(ord('a') + wrop), "compute the new letter 
    print(wrap, chr(ord(%) + wrap)) wadd the newChar to the coded w
    rint("The coded mord (with wrap) is", codedNord)
```


(Demo with pythonTutor)

User Input

Covered in detail in Lab 2:
$\Rightarrow 1$ mess = input('Please enter a message: ') 2 print("You entered", mess)
(Demo with pythonTutor)

Side Note: '+' for numbers and strings

- $\mathrm{x}=3+5$ stores the number 8 in memory location x .
- $\mathrm{x}=\mathrm{x}+1$ increases x by 1 .
- $s=$ "hi" + "Mom" stores "hiMom" in memory locations s.
- $s=s+$ "A" adds the letter \times to the end of the strings s.

Recap

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:

Lecture Slip

1. (a) What will the following Python code print:
```
months = ["Jan", "Feb","Mar","Apr","May",\
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
half = months[6]
print(half.upper())
print(half[0])
print(months [-1].lower())
print(months[2:4])
start = 9
print(months[start-1])
term = 3
print(months[(start+term-1)%12])
```


Output:

Frequently Asked Questions

From lecture slips \& recitation sections.

- When is the midterm?

There is no midterm. Instead there's 11 in-class quizzes.

- When is the final?

Wednesday, July 10 1pm-3pm

- Can I submit late homework?

No.

- I missed class. Do you need documentation?

No. Missing lecture slip \& quiz grades are replaced by your final exam score. If you will miss ≥ 2 weeks ($>20 \%$), see us about taking this in a future term.

- Why do I have to work in groups?

It's great practice to explain technical work to others.

- Can I work ahead?

Yes! All programs are available, on gradescope, 4 weeks before the deadline.

- You said "when you take second semester..." I just took this class for Pathways...

This is Pathways, but we hope that you will be a CS major/minor.
We also hope: "Get your education don't forget whence you came..."

