
Topic 10

1. Object oriented programming
2. Implementing a simple class
3. Specifying the public interface
4. Designing the data representation
5. Member functions
6. Constructors
7. Problem solving: tracing objects
8. Problem solving: discovering classes
9. Separate compilation

10. Pointers to objects
11. Problem solving: patterns for object data

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Pointers to Objects

Pointers to objects permit us to dynamically allocate them and to
share objects.

CashRegister* register_pointer = new CashRegister;
BankAccount* lisas_account_pointer = new

BankAccount(1000);
The new operator returns a pointer to the allocated object.
Now we can copy the pointer, without copying the object:

BankAccount* joes_account_pointer =
lisas_account_pointer;

Remember to call the delete operator on the pointer before
exiting the program, to reclaim the dynamic memory:

delete joes_account_pointer;

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Pointers and the -> Operator
Given:
CashRegister* register_pointer = new CashRegister;

To invoke a member function on that object, you could call
 (*register_pointer).add_item(1.95);

The parentheses are necessary because in C++ the dot operator
takes precedence over the * operator. The expression without the
parentheses would be a syntax error:

*register_pointer.add_item(1.95); // Error

The preferred syntax is the arrow operator:
register_pointer->add_item(1.95);

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The this Pointer

Each member function of every class has a built-in parameter,
called this, a pointer to the implicit parameter. (The object)

If you call
 ... register1.add_item(1.95) ...

then the this pointer has
type CashRegister* and points
to the register1 object.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

You can use the this pointer inside the definition of a
member function. For example,

void CashRegister::add_item(double price)
{
 this->item_count++;
 this->total_price = this->total_price +
price;

}

However, you don't really need the this pointer in this
case, as you saw in previous versions of the function.

The this Pointer: Example

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

The real reason to use the this pointer is to clarify duplicate
variable names, as either the data members or other explicit
parameters to a function. For example, we might add a
constructor to the class that carries over the previous day's
total_price:

CashRegister::CashRegister(double total_price)
{
 item_count =0;
 this->total_price = total_price;
}
However, we recommend just giving the explicit parameter a

different name (such as initial_total_price), to avoid
the confusion that the above code might create.

The this Pointer: Motivation

Practice It: Object Pointers

Task Statement Explanation

Dynamically allocates a string object and save
the address in the pointer variable p.

p = new string; The new operator allocates a new object from the free store and returns its address.

Deallocates the object that was allocated in the
previous task.

delete p; The delete operator deallocates the memory block with the given address.

Dynamically allocate a string object with
contents "Hi"and save the address in the
pointer variable p.

p = new string("Hi"); You need to call a constructor to initialize the string object.

Invoke the length member function on the
object that was allocated in the previous step
and save the result in the integer variable n.

n = p->length(); Use the -> operator to call a member function on a pointer to an object.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Given:
int n; string* p = nullptr;
Write the statements to implement the tasks.

Practice It: Object Pointers and this
Write the constructor implementation of a Point class:

class Point
{
public:
 Point(int x, int y);
 // Member functions omitted
private:
 int x;
 int y;
};

Point::Point(int x, int y)
{

} Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

Topic 11

1. Object oriented programming
2. Implementing a simple class
3. Specifying the public interface
4. Designing the data representation
5. Member functions
6. Constructors
7. Problem solving: tracing objects
8. Problem solving: discovering classes
9. Separate compilation

10. Pointers to objects
11. Problem solving: patterns for object data

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Keeping a Total
• Many classes need to track a quantity that can go up or down as

functions are called. Keep a data member that represents the current
total.

double total_price;

• Examples of what must be done to the total:
void CashRegister::add_item(double price)
{
 total_price = total_price + price;
}
void CashRegister::clear()
{
 total_price = 0;
}
double CashRegister::get_total()
{
 return total_price;
} Big C++ by Cay Horstmann

Copyright © 2018 by John Wiley & Sons. All rights reserved

Counting Events

For classes that need to count events, some examples:
int item_count; //Keep a counter

Increment the counter in those member functions that correspond to the
events that you want to count.

void CashRegister::add_item(double price)
{
 total_price = total_price + price;
 item_count++;
}

You may need to clear the counter:
void CashRegister::clear()
{
 total_price = 0;
 item_count = 0;
}

There may or may not be a member function that reports the count to the
class user.

Collecting Values
Some objects collect numbers, strings, or other objects. For example,
each multiple-choice question has a number of choices. A cash
register may need to store all prices of the current sale. Use an array
to store these, and a member function to add to the list:

class Question
{
 . . .
private:
 string choices[5];
 . . .
};
void Question::set_choice(int pos, string choice)
{
 choices[pos] = choice;
}

Managing Properties of an Object
A property is a value of an object that an object user can set and retrieve. For example, a
Student object may have a name and an ID.
An object property needs a getter and setter member functions. Provide a data member to
store the property’s value:

class Student
{
public:
 Student(string name_, int id_);
 string get_name() const;
 int get_id() const;
 void set_name(string new_name);
private:
 string name;
 int id;
};

void Student::set_name(string new_name) // Includes Error checking
{
 if (new_name.length() > 0) { name = new_name; }
}

Some properties should not change after initialization in the constructor, and thus need no
setter function. For example, a student’s ID.

Modeling Objects with Distinct States(1)
Some objects’ behavior depends on what happened in the past. For example, a
Fish object may look for food when it is hungry and ignore food after it has
eaten.
Such an object needs a state variable to remember whether it has recently
eaten.
Supply a data member that models the state, together with some constants for
the state values:

class Fish
{
public:
 const int NOT_HUNGRY = 0;
 const int SOMEWHAT_HUNGRY = 1;
 const int VERY_HUNGRY = 2;
 void eat();
 void move();

private:
 int hungry = NOT_HUNGRY;
};

Modeling Objects with Distinct States(2)

Determine which member functions change the state. If a fish has
just eaten food, it won’t be hungry. But as the fish moves, it will
get hungrier.

void Fish::eat()
{
 hungry = NOT_HUNGRY;
 . . .
}
void Fish::move()
{
 if (hungry == VERY_HUNGRY)
 {
 cout << "Looking for food" << endl;
 } else . . .
 if (hungry < VERY_HUNGRY) { hungry++; }
}

Finally, determine where the state affects behavior. A fish that is
very hungry will want to look for food first.

Describing the Position of an Object
• Some objects move around during their lifetime, and they remember their current

position. For example,
– A train drives along a track and keeps track of the distance from the terminus.
– A bug living on a grid crawls from one grid location to the next, in one of 4

directions.
• If the object moves along a line, represent the position as a distance.

double distance_from_terminus;
• If the object moves in a grid, remember its current location and direction in the grid:

int row, column;
int direction; // 0 = North, 1 = East, 2 = South, 3 = West

• When you model a physical object such as a cannonball, you need to track both
the position and the velocity, possibly in 2 or 3 dimensions.
double z_position, z_velocity;

• There will be member functions that update the position. In the simplest case, you
may be told by how much the object moves:
void Train::move(double distance_moved)
{
 distance_from_terminus = distance_from_terminus +

 distance_moved;
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 1

Understand the concepts of objects and classes.

•A class describes a set of objects with the same behavior.
An object is a collection of related data plus member

functions that manipulate the data.

•Every class has a public interface: a collection of member
functions through which the objects of the class can be
manipulated.

•Encapsulation is the act of providing a public interface and
private data and function internals, hiding implementation
details.

•Encapsulation enables changes in the implementation
without affecting users of a class.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 2

Understand data members and member functions of a
simple class.

•The member functions of a class define the behavior of its
objects.
•An object’s data members represent the state of the object.
•Each object of a class has its own set of data members.
•A member function can access the data members of the
object on which it acts.
•A private data member can only be accessed by the
member functions of its own class.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 3

Formulate the public interface of a class in C++.
•You can use member function declarations and function
comments to specify the public interface of a class.
•A mutator member function changes the object on which it
operates.
•An accessor member function does not change the object on
which it operates. Use const with accessors.

Choose data members to represent the state of an object.
•An object holds data members that are accessed by member
functions.
•Private data members can only be accessed by member
functions of the same class, and we usually make all data
private.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 4

Implement member functions of a class.
•Use the ClassName:: prefix when defining member
functions.
•The implicit parameter this is a pointer to the object on
which a member function is applied.
•Explicit parameters of a member function are listed in the
function definition.
•When calling another member function on the same object,
do not use the dot notation.

void CashRegister::add_items(int qnt, double prc)
{
 for (int i = 1; i <= qnt; i++)
 {
 add_item(prc); //calling another member function
 }
}

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 5

Design and implement constructors.
•A constructor is called automatically when an object is created.
•The name of a constructor is the same as the class name.
•A default constructor has no arguments.
•A class can have multiple constructors. (“overloaded”)
•The compiler picks the constructor that matches the arguments.
•Be sure to initialize all number and pointer data members in a constructor.

class BankAccount
{
public:
 // “Default” constructor: Sets balance=0
 BankAccount();
 // Sets balance to initial_balance
 BankAccount(double initial_balance);
 // . . . Member functions omitted
private:
 double balance;
};

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 6

Use the technique of object tracing for visualizing
object behavior.
•Write the member functions on the front of a card, and the
data member values on the back.
•Update the values of the data members when a mutator
member function is called.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 7

Discover classes that are needed for solving a
programming problem.

•To discover classes, look for nouns in the problem
description.

•Concepts from the problem domain are good candidates
for classes.

•Verbs in the description will inspire member functions
required to manipulate the class data.

•A class aggregates another if its objects contain objects of
the other class.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 8

Separate the interface and implementation of a class in
header and source files.
•The code of complex programs is distributed over multiple
files.
•Header files contain the definitions of classes and
declarations of nonmember functions.
•Source files contain function implementations.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 9

Use pointers to objects and manage dynamically
allocated objects.
•Use the new operator to obtain an object that is located on
the free store.
•The new operator returns a pointer to the allocated object.
•When an object allocated on the free store is no longer
needed, use the delete operator to reclaim its memory.
•Use the -> operator to invoke a member function through
a pointer, or to access a private data member from the
“this” pointer
•In a member function, the this pointer points to the
implicit parameter.

Big C++ by Cay Horstmann
Copyright © 2018 by John Wiley & Sons. All rights reserved

Chapter Summary, Part 10

Use patterns to design the data representation of a
class.
•An data member for the total is updated in member
functions that increase or decrease the total amount.
•A counter that counts events is incremented in member
functions that correspond to the events.
•An object can collect other objects in an array.
•An object property can be accessed with a getter member
function and changed with a setter member function.
•If your object can have one of several states that affect the
behavior, supply a data member for the current state.
•To model a moving object, you need to store and update its
position.

