
 STATIC MEMBER
 VARIABLES

class Something{
public:
 int m_value = 1;//normal(automatic)
};

int main() {
 Something first;
 Something second;
 first.m_value = 2;

cout << first.m_value; // 2
 cout << second.m_value; // 1
}

Member variables of a class can be made static by
using the static keyword:

class Something{
public:
 static int s_value;
};

int Something::s_value = 1; //defines

int main() {
 Something first;
 Something second;
 first.s_value = 2;

cout << first.s_value; // 2
 cout << second.s_value; // 2
}

Unlike normal member variables, static member
variables are shared by all objects of the class.

Because s_value is a static member variable, it
is shared between all objects of the class.

Consequently, first.s_value is the same
variable as second.s_value

The above program shows that the value we set
using first can be accessed using second

Static members are not associated with
particular class objects:

Although you can access static members through
objects of the class, static members exist even if no
objects of the class have been instantiated!

Much like global variables, static members are
created when the program starts, and destroyed
when the program ends.

Consequently, it is better to think of static members
as belonging to the class itself, not to the objects of
the class.

Because s_value exists independently of any
class objects, it can be accessed directly using the
class name and the scope resolution operator:

Something::s_value

class Something{
public:
 static int s_value;
};

int Something::s_value = 1; //defines

int main() {
 // no object was instantiated
 Something::s_value = 2;

cout << Something::s_value; // 2
}

s_value is referenced by class name rather than
through an object. We are able to access it as
Something::s_value. This is the preferred
method for accessing static members.

Defining and initializing static members:
When we declare a static member variable
inside a class, we’re telling the compiler
about the existence of a static member
variable, but not actually defining it (much
like a forward declaration).
Because static member variables are not
part of the individual class objects (they are
treated similarly to global variables, and get
initialized when the program starts), you
must explicitly define the static member
outside of the class, in the global scope.

class Something { // Objects With Unique ID's:
private:

static int s_idGenerator;
int m_id;

public:
Something() { m_id = s_idGenerator++; }
int getID() const { return m_id; }

};

int Something::s_idGenerator = 1;//no access ctrl

int main() { //now make objects with unique ID's:
Something first;
Something second;
Something third;
cout << first.getID(); // 1
cout << second.getID(); // 2
cout << third.getID(); // 3

}

