
Hand-tracing is a simulation of

code execution in which you

step through instructions and

track the values of the

variables.

PRINTED BY: Genady.Maryash@gmail.com. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

4.2 Problem Solving: Hand-Tracing

In Programming Tip 3.6, you learned about the method of hand-tracing. When you
hand-trace code or pseudocode, you write the names of the variables on a sheet of
paper, mentally execute each step of the code and update the variables.

It is best to have the code written or printed on a sheet of paper. Use a marker, such
as a paper clip, to mark the current line. Whenever a variable changes, cross out the

old value and write the new value below. When a program produces output, also write down the output in another
column.

Consider this example. What value is displayed?

int n = 1729;

int sum = 0;

while (n > 0)

{

 int digit = n % 10;

 sum = sum + digit;

 n = n / 10;

}

cout << sum << endl;

There are three variables: n, sum, and digit.

The first two variables are initialized with 1729 and 0 before the loop is entered.

int n = 1729;

 int sum = 0;

while (n > 0)

{

 int digit = n % 10;

 sum = sum + digit;

 n = n / 10;

}

cout << sum << endl;

Because n is greater than zero, enter the loop. The variable digit is set to 9 (the remainder of dividing 1729 by 10).
The variable sum is set to 0 + 9 = 9.

int n = 1729;

int sum = 0;

while (n > 0)

{

 int digit = n % 10;

 sum = sum + digit;

 n = n / 10;

}

cout << sum << endl;

Finally, n becomes 172. (Recall that the remainder in the division 1729 / 10 is discarded because both arguments are integers.)

PRINTED BY: Genady.Maryash@gmail.com. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

Cross out the old values and write the new ones under the old ones.

int n = 1729;

int sum = 0;

while (n > 0)

{

 int digit = n % 10;

 sum = sum + digit;

 n = n / 10;

}

cout << sum << endl;

Now check the loop condition again.

int n = 1729;

int sum = 0;

 while (n > 0)

{

 int digit = n % 10;

 sum = sum + digit;

 n = n / 10;

}

cout << sum << endl;

Because n is still greater than zero, repeat the loop. Now digit becomes 2, sum is set to 9 + 2 = 11, and n is set to 17.

Repeat the loop once again, setting digit to 7, sum to 11 + 7 = 18, and n to 1.

Enter the loop for one last time. Now digit is set to 1, sum to 19, and n becomes zero.

Hand-tracing can help you

understand how an unfamiliar

algorithm works.

Hand-tracing can show errors

in code or pseudocode.

PRINTED BY: Genady.Maryash@gmail.com. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

int n = 1729;

int sum = 0;

 while (n > 0)

{

 int digit = n % 10;

 sum = sum + digit;

 n = n / 10;

}

cout << sum << endl;

The condition n > 0 is now false. Continue with the statement after the loop.

int n = 1729;

int sum = 0;

while (n > 0)

{

 int digit = n % 10;

 sum = sum + digit;

 n = n / 10;

}

 cout << sum << endl;

This statement is an output statement. The value that is output is the value of sum, which is 19.

Of course, you can get the same answer by just running the code. However, hand-tracing can give you an insight that
you would not get if you simply ran the code. Consider again what happens in each iteration:

• We extract the last digit of n.

• We add that digit to sum.

• We strip the digit off n.

In other words, the loop forms the sum of the digits in n. You now know what the
loop does for any value of n, not just the one in the example. (Why would anyone
want to form the sum of the digits? Operations of this kind are useful for checking
the validity of credit card numbers and other forms of ID numbers—see Exercise

••• Business P4.21.)

Hand-tracing does not just help you understand code that works correctly. It is a powerful technique for finding
errors in your code. When a program behaves in a way that you don’t expect, get out a sheet of paper and track the
values of the variables as you mentally step through the code.

You don’t need a working program to do hand-tracing. You can hand-trace
pseudocode. In fact, it is an excellent idea to hand-trace your pseudocode before you
go to the trouble of translating it into actual code, to confirm that it works correctly.

•• 1.

Trace through the following loop.

int n = 1796;

int count = 0;

• 2. What did the loop of the preceding problem do?

Compute the sum of all digits in n

Compute the sum of all digits in n that are 6 or 7

Count all digits in n

Count all digits in n that are 6 or 7

• 3. Trace the following code, assuming that both first and second begin with a value of 1. How many values
are printed?

while (second <= 10)

{

 cout << second << endl;

 int temp = first + second;

 first = second;

 second = temp;

}

1

4

5

6

•• 4.

Trace through the following loop.

while (n > 0)

{

 int digit = n % 10;

 if (digit == 6 || digit == 7)

 {

 count++;

 }

 n = n / 10;

}

cout << count << endl;

n count digit Output

s = "Fred"
r = ""
i = 0
while i < length of s
 c = ith character of s
 r = c + r
 i++
Print r

r i c Output

• 5. What did the loop of the preceding problem do?

Print all characters in the string s

Print the string s in reverse order

Print every other character in the string s

Count the number of characters in s

••• 6. Implement the pseudocode of the preceding problem, prompting the user for the value of the string s.

Complete the code in your IDE or go to to complete the code and evaluate your solution.

Practice It

• 1. Trace the following code, assuming that both first and second begin with a value of 1. What is the last
value printed?

while (second <= 10)

{

 cout << second << endl;

 int temp = first + second;

 first = second;

 second = temp;

}

5

8

10

13

•• 2.

Rearrange the following lines of code to produce a program that prints all digits of a positive integer n in
reverse order. Not all lines are useful.

-int result = 1;

.while (n > 0)

.{

. int digit = n % 10;

- if (digit != 0)

- {

- result = result * digit;

- }

. cout << digit;

, n = n / 10;

.}

.cout << endl;

-cout << result << endl;

http://wiley.code-check.org/files?repo=wiley&problem=ebook-bc-3-ch04-sec02-cc-1

•• 3. Write a program that prints all digits of a positive integer in reverse order. Hint: Start with the “sum of
digits” program in this section.

Complete the code in your IDE or go to to complete the code and evaluate your solution.

••• 4. Write a program that prints all digits of any integer in reverse order.

Complete the code in your IDE or go to to complete the code and evaluate your solution.

•• 5. Trace through the following statements:

•• 6. The preceding walkthrough showed a potential error. There is a comma after the last value. Usually,
commas are between values only. Rearrange the following lines of code to produce a loop that does not
have this problem. Use all lines.

• 7.

The following pseudocode is intended to count the number of digits in the positive integer n:

count = 1
temp = n

h l

int n = 1;

while (n <= 3)

{

 int r = n * n;

 cout << r + ",";

 n++;

}

cout << endl;

n r Output

.int n = 1;

.while (n <= 3)

.{

. if (n > 1) { cout << ","; }

, int r = n * n;

. cout << r;

. n++;

.}

.cout << endl;

http://wiley.code-check.org/files?repo=wiley&problem=ebook-bc-3-ch04-sec02-cc-2
http://wiley.code-check.org/files?repo=wiley&problem=ebook-bc-3-ch04-sec02-cc-3

While temp > 10
 Increment count.
 Divide temp by 10.0.

Trace the pseudocode for n = 123, n = 100, and n = 3. What errors do you find, and how do you fix the
code?

The code is wrong for all inputs. The loop condition should be temp != 10

The code is wrong for inputs that are divisible by ten. The loop condition should be temp >= 10

The code is wrong for inputs that are less than ten. The loop condition should be temp > 0.

There are no errors.

