CL=CSCI 160

CLASS 3

1-12. Perform the following binary multiplications:
(a) 1101×1011 (b) 0101×1010
(c) 100111×011011

1-14. A limited number system uses base 12 . There are at most four integer digits. The weights of the digits are $12^{3}, 12^{2}, 12$, and 1 . Special names are given to the weights as follows: $12=1$ dozen, $12^{2}=1$ gross, and $12^{3}=1$ great gross.
(a) How many beverage cans are in 6 great gross +8 gross +7 dozen +4 ?
(b) Find the representation in base 12 for 7569_{10} beverage cans.

$$
12^{2}=144 ; \quad 12^{3}=1728
$$

(a) $\quad 6 \times \overline{1728}_{12^{3}}^{18 \times 144^{2}}+7 \times 12+4=\cdots$.
(b)

$$
\begin{aligned}
& \begin{array}{l}
756910 \\
\frac{6912}{7}=4 \text { gr. } 1728 \text { 年 } \\
=657
\end{array} \\
& \frac{576}{\frac{281}{72}} \begin{array}{l}
4 \\
9
\end{array} \quad 4 \begin{array}{lll}
4 & 6 & 9 \\
\text { base 12 }
\end{array}
\end{aligned}
$$

1-16. *In each of the following cases, determine the radix r :
(a) $(\mathrm{BEE})_{r}=(2699)_{10}$
(b) $(365)_{r}=(194)_{10}$
(a)

$$
\begin{aligned}
& E_{14}^{B} \cdot r^{2}+\underbrace{E}_{14} \cdot r+E 699 \\
& B r^{2}+E r=2699-14=2685
\end{aligned}
$$

alternative $1 \quad$ (Note: r is a divisor of 2685: factorize it!)

$$
r(B r+E)=2685=179 \times \underbrace{3 \times 5}_{\text {base }} \quad 15=r
$$

alternative 2 (Use quadratic formula)
$11 r^{2}+14 r-2685=0 \quad$ Use formula to solve quadratic equations
to get the result, but the coefficients are large!

$$
r_{1,2}=<\frac{15}{\text { - squatting }}
$$

(b) Solve : $3 r^{2}+6 r+\underbrace{5-194}_{-189}=0$ Use same formula to solve quadratic equations to get the result:

Result $r=7$
($r-1$)'s Complement-Representation
$r=$ base Very important: How are our numbers stored?

Definition
$r=2$
(N is a binary number!)
How did you compute $N_{1 c}=1$'s complement of N ? By swapping $0<->1$, which is equivalent to:

$$
N_{1 c}=\underbrace{1 \ldots \ldots .1}_{n} \cdot \underbrace{1 \ldots \ldots .1}_{m}-N=1 \underbrace{10 \ldots \ldots . .}_{n} \underbrace{0 . \ldots \ldots .0}_{m}-\frac{0.0 \ldots . . .01}{m}-N=2^{n}-2^{-m}-N
$$

Base r:

$$
N_{(r-1) c}=r^{n}-r-m-N
$$

Algorithm for subtracting two numbers using only addition and the ($r-1$)'s complement

To perform $M-N$ do:

1) $\quad M+N(r-1) c$
2)

a) If there is an e. a. c. (= end-around-carry = overflow), then add it to the I. s. d. (= least significant digit) of result from 1). Stop.
b) If there is no e. a. c., then the result is negative, and is obtained by taking the $(r-1)$'s complement of what we obtained at 1); in other words, we compute:

$$
-(\underbrace{M+N_{(r-1) c}}_{\text {Result from 1) }})(r-1) c
$$

Stop.

Example in binary + HW assigned

Alg (M-N):

1) $\quad M+N_{(r-1) c}$
2) a) e.a.c. \rightarrow add it to l.s.d.
b) no e.a.c. \rightarrow compute -(r-1)'s compl. of 1)

Ex-binary $r=2$ Suppose $n=4, m=2$

2-a) Path: i) \quad 2-b) Path: ii) Swap $M<->N$, to get to case 2-b)

HW (more to follow):
Why does this algorithm work?

Why does this algorithm work?

Hint
We know:

m

1) $\quad M+N_{(r-1) c}=M+r^{n}-r-m-N$
2) Whether we follow a) or b) depends on the presence of an e. a.c. What is the magnitude of the e.a.c.? It's an 'overflow':
e.a.c: $10 \ldots$..... 0 Orn branch a) there is an e. a. c., which means we have:

$\langle->M-N>0$ or $M>N$
It also means, that the case when
$M-N=0$ will take branch b), which means that 0 will be expressed as -0 by this Alg. Continue justifying the computations in the branches 2-a) and 2-b) as HW.

3-A Do the following conversion problems:
(a) Convert decimal 34.4375 to binary.
(b) Calculate the binary equivalent of $1 / 3$ out to 8 places. Then convert from binary to decimal. How close is the result to $1 / 3$?
(c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. Is the answer the same?

3- B Determine the value of base x if $(211)_{x}=(152)_{8}$.

3-C Noting that $3^{2}=9$, formulate a simple procedure for converting base- 3 numbers directly to base-9. Use the procedure to convert $(2110201102220112)_{3}$ to base 9 .

3-D The solutions to the quadratic equation
$x^{2}-11 x+22=0$
are $x=3$ and $x=6$.
Determine the base of the numbers in the equation.

3-E Convert the hexadecimal number 68BE to binary, and then convert it from binary to octal and then to base 32.

