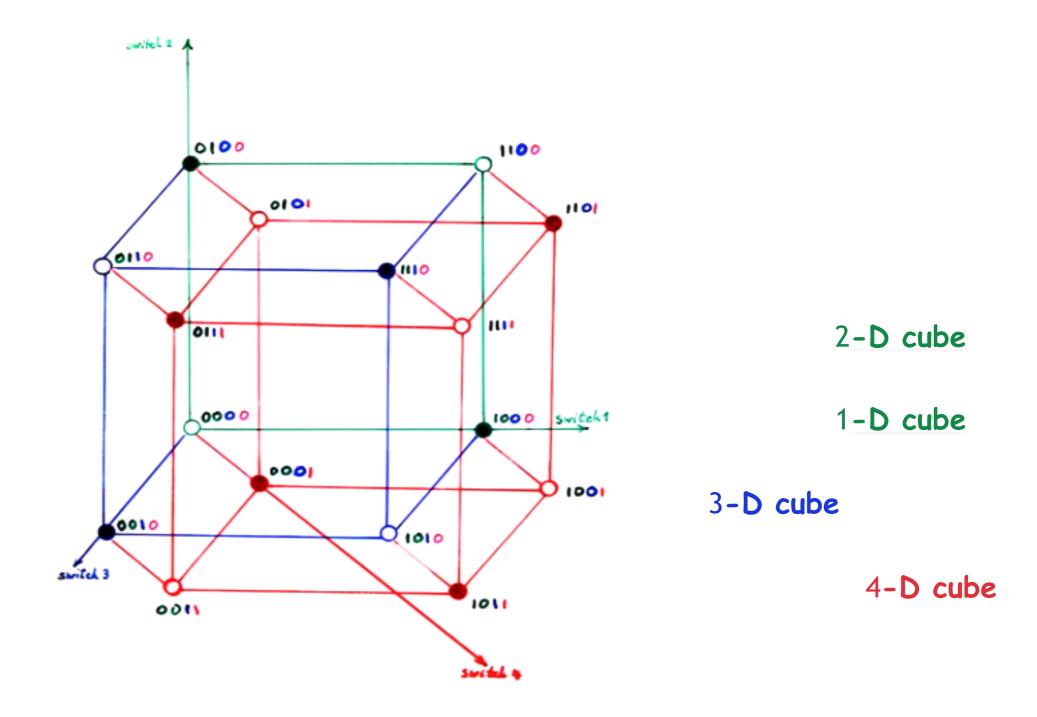
CL=CSCI 160

CLASS 6

HW: 4 independent switches-sol. (4-cube)

Solution <u>4-D cube</u>



Solution (continued)

<u>Truth Table</u>

4 switches imply 4 input variables:

					-
X_1	X_2	X_3	X 4	f1	f2
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	1	0
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	1	0
1	1	1	1	0	1

<u>HW:</u>

Write all axioms for the Boolean algebra (abrev. B.A.) of the power set of a set $S \neq \emptyset$, namely: (P(S), \cup , \cap , $\stackrel{0}{\cup}$; \emptyset , S), where P(S) = { X: X \subseteq S}.

Solution

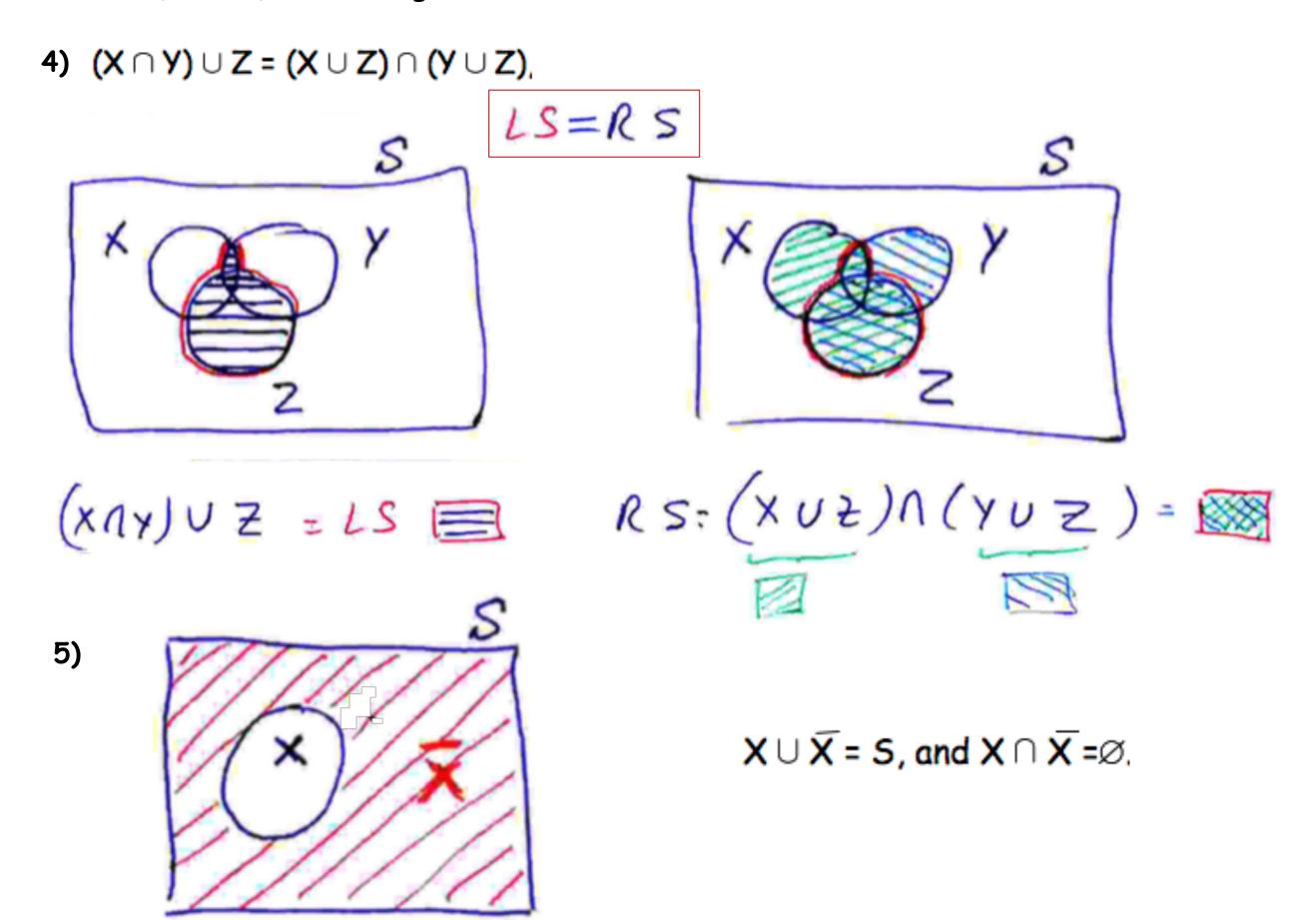
(B,+,·,';0,1):

- 1) +, are closed operations in B: $x + y \in B$ $x \cdot y \in B, \forall x, y \in B$
- 2) Identity elements: x + 0 = 0 + x = x $x \cdot 1 = 1 \cdot x = x, \forall x \in B$
- 4) +, are distributive relative to each other: $(x + y)\cdot z = x \cdot z + y \cdot z$ $(x \cdot y) + z = (x + z)(y + z), \forall x, y, z \in B$
- 5) ∀ x ∈ B, ∃ x' ∈ B, the complement of x, such that: x + x' = 1 and x x' = 0
 - 6) There are at least two elements in B, as: 0 ≠ 1

- 1) \cup, \cap are closed in P(S): $X \cup Y \subseteq S$ [$\Leftrightarrow \in P(S)$], $X \cap Y \subseteq S$, $\forall X, Y \subseteq S$ [Note $X \in P(S) \Leftrightarrow X \subseteq S$]
- 2) Identity elements: $X \cup \emptyset = \emptyset \cup X = X$ $X \cap S = S \cap X = X, \forall X \subseteq S.$
 - 3) \cup , \cap , are commutative: X \cup Y = Y \cup X, X \cap Y = Y \cap X, \forall X, Y \subseteq S
- 4) \cup , \cap , are distributive one relative to the other one: (X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z) (X \cap Y) \cup Z = (X \cup Z) \cap (Y \cup Z), \forall X, Y \subseteq S

5) $\forall X \subseteq S$, $\exists \overline{X} \subseteq S$ (same as ${}^{0}X$), called the complement of X, such that: $X \cup \overline{X} = S$, and $X \cap \overline{X} = \emptyset$.

Axioms 4) and 5)- Venn diagrams:



HW 6.1 assigned:

Write all 7) - 12) properties for the algebra of the power set of a

set $S \neq \emptyset$, namely: (P(S), \cup , \cap , \bigcup ; \emptyset , S), where P(S) = { X: X \subseteq S},

if you haven't done this for today.

<u>Theorem</u>: Every Boolean algebra is equivalent to a B. A. of a power set for some set that is not empty.

 \implies Size of any Boolean algebra = 2^k, for some k > 0, where k is the size of the set, for which we take the power set that is the B. A.

```
Principle of duality:

If we have a true statement and swap:

+ \longleftrightarrow \cdot and 0 \longleftrightarrow 1

we obtain another true statement.
```

Next, for any Boolean algebra (B, +, \cdot , ', 0,1), where we know that the axioms 1) - 6) hold let's prove the properties 7 - 12.

Properties - to prove using Axioms 1) - 6):

7)+, • are <u>idempotent</u>:

 $\mathbf{x} + \mathbf{x} = \mathbf{x}$ $\mathbf{x} \cdot \mathbf{x} = \mathbf{x}, \forall \mathbf{x} \in \mathbf{B}$

By duality we only need to prove just one of these two equalities above.

Proof

2) Identity elements: x + 0 = 0 + x = x $x \cdot 1 = 1 \cdot x = x, \forall x \in B$

5) ∀ x ∈ B, ∃ x' ∈ B, the complement of x, such that: x + x' = 1 and x x' = 0

$$x^{(2)} = x + 0 = x + x \cdot x' = (x + x) \cdot (x + x')^{(5)} = (x + x) \cdot 1 = x + x$$

Let's try to prove the dual equality via a dual proof, following the dual axioms.

It is not needed: we just do it as an exercise, to see duality in action.

$$x \stackrel{(2)}{=} x \cdot 1 \stackrel{(5)}{=} x \cdot (x + x') \stackrel{(4)}{=} x \cdot x + x \cdot x' \stackrel{(5)}{=} x \cdot x + 0 \stackrel{(2)}{=} x \cdot x$$

HW 6.2-assigned :

Prove all properties 8) - 12) using axioms 1) - 6) and the properties you just proved. <u>Attention</u>: For property 11), associativity, use truth tables on the variables and assume only the values of the 2-element B.A., namely $B = \{0, 1\}$, also called the switching algebra.

Exercises (Manipulation in B. A.)

$$xy + xy' = x(y + y') = x \cdot 1 = x$$

$$(x + y)(x + y')^{(4)} = x + yy' = x + 0^{(2)} = x$$

$$zx + zx'y = z (x + x'y) = z (x + x')(x + y) = z \cdot 1 \cdot (x + y) = z (x + y)$$

$$(x + y)' (x' + y')' = x'y' \cdot x \cdot y = 0$$
(9)
(3)
(3)
(5)

9)
$$x'' = x$$
, $\forall x \in B$

Prove:
$$xyz + x'y'z + x'yz + xyz' + x'y'z' = xy + x'y' + yz$$

Proof

$$LS = xyz + x'y'z + x'yz + xyz' + x'y'z' = xyz + xyz + x'y'z + x'y'z + x'y'z' = xyz' + x'y'z' = xyz' + x'y'z' = xy'z' + x'y'z' = x'y'z' + x'y'z' + x'y'z' + x'y'z' = x'y'z' + x'y'z' + x'y'z' = x'y'z' +$$

= xy + yz + x'y' = RS

Done!