Other Logic Operations

CLASS 8

<u>HW 7.2</u> Prove: (x+y)(y+z)(z+x') = (x+y)(z+x')

Solution

<u>HW 7.3</u>

2-2 (a) $\overline{X}\overline{Y} + \overline{X}Y + XY = \overline{X} + Y$ equality to prove

Solution

LS =
$$\overline{X}(\overline{Y} + Y) + XY = \overline{X} + XY = (\overline{X} + X)(\overline{X} + Y) = \overline{X} + Y = RS$$

(2)

1

<u>HW 7.3</u> (continuation)

2-2 (cont.) b) Prove: $\overline{A}B + \overline{B}\overline{C} + AB + \overline{B}C = 1$ Solution (4) $(\overline{A} + A)B = B$ (4) LS = B + B \overline{C} + B \overline{C} = B + B $\overline{(C + C)}$ = B + B = 1 = RS (5) c) Prove: $y + \overline{X}Z + X\overline{y} = X + y + Z$ Solution To prove: $LS = Y + \overline{X}Z + \overline{X}\overline{Y} = X + Y + Z = RS$ $LS = (Y + X)(Y + \overline{Y}) + \overline{X}Z + (5) = (X + \overline{Y}) + \overline{X}Z + (2) = (X + Y + \overline{X})(X + Y + Z) = RS$ d) Prove: $\overline{X}\overline{y} + \overline{y}Z + XZ + XY + \overline{y}\overline{Z} = \overline{X}\overline{y} + XZ + \overline{y}\overline{Z}$ Solution 1 Expand both sides, s.t. each term contains all 3 variables: LS $\stackrel{(2)}{=} \overline{X}\overline{Y}(Z+\overline{Z}) + (X+\overline{X})\overline{Y}Z + XZ(Y+\overline{Y}) + XY(Z+\overline{Z}) + (X+\overline{X})Y\overline{Z} \stackrel{(4)}{=}$ = $\overline{X}\overline{Y}Z + \overline{X}\overline{Y}\overline{Z} + X\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}Z + XYZ + XYZ + XY\overline{Z} + XY\overline{Z} + \overline{X}\overline{Y}\overline{Z} \stackrel{(7)}{=}$ $= \overline{X}\overline{Y}Z + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}\overline{Z}$ $RS \stackrel{(2)}{=} \overline{X} \overline{Y} (Z + \overline{Z}) + X (Y + \overline{Y}) Z + (X + \overline{X}) Y \overline{Z} \stackrel{(4)}{=} \overline{X} \overline{Y} Z + \overline{X} \overline{Y} \overline{Z} + X Y Z + X \overline{Y} Z + X \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z} = LS$

Consider only the terms in LS that are not in RS, and expand <u>only</u> those.

$$\overline{y} \ge + \overline{x} y = = (x + \overline{x}) \overline{y} \ge + x \overline{y} (z + \overline{z}) = x \overline{y} \ge + \overline{x} = + \overline{x} \overline{y} \ge + \overline{x} = + \overline{x} =$$

Notice how all these terms get absorbed according to (12) by other terms on the LS...

... and they all disappear!

HW 7.3 (continuation)

2-4 +Given that $A \cdot B = 0$ and A + B = 1, use algebraic manipulation to prove that

$$(A+C)\cdot(\overline{A}+B)\cdot(B+C) = B\cdot C$$

<u>Hint</u>

I Note that by (5) A = B, which is equivalent with $B = \overline{A}$

II Multiply out.

2-8 Using DeMorgan's theorem, express the function $F = A\overline{B}C + \overline{A}\overline{C} + AB$

(a) with only OR and complement operations(b) with only AND and complement operations.

Hint Use De Morgan's (10): for (a): $x \cdot y \stackrel{(9)}{=} ((x \cdot y)')' \stackrel{(10)}{=} (x' + y')'$ for (b): $x + y = ((x + y)')' = (x' \cdot y')'$

2-9 Complement the following expressions:

a) A B + A B We perform a) --> the rest still as HW 8.0 (if not done yet)

$$(\overline{A \ \overline{B} + \overline{A} \ B})^{(10)} = (\overline{A \ \overline{B}}) \cdot (\overline{\overline{A} \ B})^{(10)} = (\overline{A} + B) (A + \overline{B})^{(4)} = A B + \overline{A} \overline{B}$$

Boolean functions	Operator symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	<i>x</i> ′
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	у
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	<i>y</i> ′	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	<i>x</i> ′	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Table Boolean Expressions for the 16 Functions of Two Variables

<u>HW 8.1</u> - assigned

By substitution the Boolean expression equivalent of the binary operation as defined in **Table of 16 functions on 2 variables**, show the following:

(a) The inhibition operation is neither commutative nor associative.

(b)The exclusive-OR operation is commutative and associative.