
Canonical Standard Forms

CLASS  10



Boolean functions - Canonical form vs. standard forms

Independent Switches Problem

Sum of minterms representation:

f = 1

x = 0 and y = 0 and z = 1
or

x = 0 and y = 1 and z = 0
or

x = 1 and y = 0 and z = 0
or

x = 1 and y = 1 and z = 1

A = 1

Note: and
B = 1

AB = 1

x’ = 1 and y’ =1 and z = 1
or

x’ = 1 and y = 1 and z’ = 1
or

x = 1 and y’ = 1 and z’ = 1
or

x = 1 and y = 1 and z = 1

x’y’z = 1
or

x’yz’ = 1
or

xy’z’ = 1
or

xyz = 1

x’y’z + x’yz’ + xy’z’ + xyz = 1

minterms:

A = 1
or

B = 1
A + B = 1

f = x’y’z + x’yz’ + xy’z’ + xyz

This is called the canonical sum of products form.

The canonical form is unique for a given function, and it can be used to compare functions/expressions.
Most times, the canonical form may be reduced, simplified.

Any sum of products, not necessarily containing only minterms, is called standard.
Similarly, we have a dual form, called the canonical product of sums form; however in this course
we will only deal with the sum of minterms representations, as the other is handled similarly.

Let’s write the expression of function f, from its truth table.



Example (Short Cut): Obtain the canonical form directly from the truth table of an arbitrary function

Canonical sum of products form:

f = also a standard form

f = x’y’ + xy’ + xyz

other standard forms for f
f = y’ + xyz

[= (y’ + y)(y’ + xz) = y’ + xz]

f = y’ + xz

Because the canonical sum of products form is unique we express this function above as:

(0, 1, 4, 5, 7)f =

x’y’z’ +x’y’z + xy’z’ + xy’z + xyz



Minimization of functions

Time and space trade-offs

Variety of techniques to obtain gate simplification.

Traditional minimization techniques: reduce delay at expense of adding more gates.


Other methods: Trade-off between increased circuit delay and reduced gate count.

However: simplification depends on the metric we use:

▪ The number of literals it contains
= amount of wiring needed to implement the function: # inputs: 3-4 usual,
 > 8,9 very rare.

▪ The number of gates

= strong correlation with # components needed for implementation; 

simplest design to manufacture is the one with fewest gates, not literals.
▪ Number of cascaded levels of gates

= reducing # logic levels would reduce the overall delay in the path input ––> output;

however an implementation with minimum delay rarely yields an implementation with fewest # 
literals or gates.



Example
F = a’b’c + a’bc + ab’c + abc’ 

F1 =abc’+a’c+b’c

set t = ab,  F = tc’ + t’c 

F2 = (ab)c’ + (a'+b')c = (ab)c’ + (ab)'c 

• 2-level implementation
• 7 literals (<12 as the original)

• 4 literals
• 3-level implementation

• longest path: 4 gates (> 3 in F1)
––> not as fast as F1.

• total # gates in F2  ≤ in F1.
F3  = (ab)     c

• XOR = complex gate: implement
by combining NAND, NOR

• lowest gate count, but also
worst signal delay, for XOR slow

compared to simple AND, OR.

Logical Diagrams (all three functions in one diagram):



HW 12 - assigned

12-A	     Given the Boolean functions F1 and F2,


	     (a)   Show that the Boolean function E = F1 + F2 contains the sum of the minterms of F1 and F2 .

(b)   Show that the Boolean function G = F1 F2 	contains only the minterms that are common       

to F1 and F2 .

12-B	     Give the truth table of the function:

                           

                        F = xy + xy' + y'z


