Prime Implicant Table

CLASS 15

QUIZ 2.2

Solution

1)

I Design a majority circuit with three inputs in the following way:

1) Write the truth table of a function, say $F_3(x,y,z)$, where the output agrees with the majority of the input, that is $F_3(x,y,z) = 1$ if and only if at least two out of the three variables: x,y,z have the value 1.

2) Write the expression of the function F₃(x,y,z) and minimize it.

2) $F_3 = x'yz + xy'z + xyz' + xyz$

All implicants are essential.

$$F_3 = A + B + C = xy + xz + yz$$

<u>Note</u>: From the expression of the minimal form we can see that

we take any 2 out of the 3 variables to form majority

Solution (Q2.2+HW)

<u>×</u>

HW.

+

z

F₄

tie d

tie d

tie_d

tie d

tie d

tie d

II Next, design a majority circuit function, say $F_4(x,y,z,t)$, with four inputs. Handle ties in a way that is 'optimal' from the point of view of the minimization of F_4 . Write the truth table of F_4 . Continue this task as

What do we do with the ties? 'tie' is not an acceptable value for a function!

What do we care about?

To minimize F_4 , and not who wins in a tie! \rightarrow Use d, to our advantage.

7 is covered by A, E, F

<u>Case I</u> : Take A	F4 = A + B = yt + xz	
<u>Case II</u> : Take E	F4 = E + C = yz + x†	<u><- 3 Minimal forms</u>
<u>Case III</u> : Take F	F4 = F + D = zt + xy	

<u>Note</u>: From the expression of the minimal form we can see that we take any 2 out of the 4 variables and the remaining 2 to form at least a tie.

How would the majority circuit look for 5 variables?

 $F_{5}(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) = 1 \iff at least 3 out of the 5 variables are 1.$

$$\binom{5}{3} = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = \frac{10}{1 \cdot 2}$$
, terus :

$$F_{5} = X_{1} X_{2} X_{3} + X_{1} X_{2} X_{4} + Y_{1} X_{2} X_{5} + X_{1} X_{3} X_{4} + Y_{1} X_{3} X_{5} + Y_{1} X_{4} X_{5} + Y_{2} X_{3} X_{4} + Y_{2} X_{3} X_{5} + Y_{2} X_{4} X_{5} + X_{3} X_{5} + X_{3} X_{5} + X_{3} X_{5} + X_{3} X_{5} + X_{5} + X_{5} X_{5} + X_{5} +$$

We wrote it directly in minimal form

HW 16

Consider the function; we applied the tabulation method on:

-111

111 -

 $f = \Sigma (1, 2, 3, 4, 7, 8, 12, 15) + d \Sigma (0, 5, 9, 10, 14))$

Draw the K-map and find all prime implicants, giving them the same labels (letters),
A - I, in class, when applying the tabulation method.

We have from tabulation method (class 16):

			Index	Impl. Binary	Impl. Dec.	11
	(7, 15)	II		00	(0, 1, 2, 3)	G
	(14, 15)	Н		0-0-	(0, 1, 4, 5)	F
			0	-00-	(0, 1, 8, 9)	Ε
				- 0 - 0	(0, 2, 8, 10)	D
none				00	(0, 4, 8, 12)	С
			1	0 1	(1, 3, 5, 7)	В
				1 0	(8, 10, 12, 14)	A

Least covered 1's: 2, 3, 4, 7, 12, 15: all covered by exactly two implicants. Choose one of them: 2, covered by D, G. Every minimal form will contain D or G. <u>Case I</u>: Take D—> 2 and 8 are covered.

To cover the rest we need one size-2 implicant (for 15) and 2 x size-4 implicants:

 $f = D + B + C + \left\{ \begin{array}{c} H \\ I \end{array} \right\} \quad \text{or} \quad \begin{array}{c} f = D + G + C + I \\ (note: it's redundant, as we don't need D; if you don't note it, go to Case II below) \\ \hline Case II: Take G \quad \longrightarrow 1,2,3 \text{ are covered}. \quad 15 \text{ again may be covered only by a size-2 implicants: H, I.} \\ However, if we cover 15 by implicant I, then the remaining 1's may be covered by just one size-4 implicant. \end{array}$

 $f = G + C + I \quad \underline{<-\text{Minimal form}} \quad \text{which means } \underline{it's \text{ the only one}}$ $f = x'y' + z't' + yzt \quad \underline{<-\text{only} \text{Minimal form as expression}}$

HW 17.1 - assigned

Α.

Simplify the following Boolean function F together with the don't-care conditions d; then express the simplified function.

(a) $F(x, y, z) = \Sigma (0, 1, 2, 4, 5)$ $d(x, y, z) = \Sigma (3, 6, 7)$

(b) $F(A, B, C, D) = \Sigma (0, 6, 8, 13, 14)$ $d(A, B, C, D) = \Sigma (2, 4, 10)$

Β.

A logic circuit implements the following Boolean function:

$$F = A'C + AC'D'$$

It is found that the circuit input combination A = C = 1 can never occur. Find a simpler expression for F using the proper don't-care conditions.

<u>Prime Implicant Table</u> [it computes a minimized form]

Consider the function; we applied the tabulation method on:

f = Σ (1, 2, 3, 4, 7, 8, 12, 15) + d Σ (0, 5, 9, 10, 14))

1's (no d's) are the columns; the prime implicants are the rows:

1) No essentials

- 2) We removed dominated rows A and H
- 3) We removed dominating columns 1, 7 and 8

	-111 111-	(7, 15) I (14, 15) H	
Index	Impl. Binary	Impl. Dec.	1
	00	(0, 1, 2, 3)	G
	0-0-	(0, 1, 4, 5)	F
0	-00-	(0, 1, 8, 9)	Ε
	- 0 - 0	(0, 2, 8, 10)	D
	00	(0, 4, 8, 12)	С
1	0 1	(1, 3, 5, 7)	В
	1 0	(8, 10, 12, 14)	A
		1 11	

Procedure:

1) Find essentials; put them in the minimal form and

eliminate from table.

2) Remove: Dominated rows.

3) Remove: Dominating columns.

Repeat steps 1) - 3) until a minimized form is obtained

Note: when a 1 has only one x in its column then the implicant corresponding to that x is essential.

Prime Implicant Table

(continued)

12 15 2 3 4 В × × С x × D x E F × G х × н × Ι ×

We redo the table:

-111 (7, 15) (14, 15) 111 -Index | Impl. Binary Impl. Dec. 00--(0, 1, 2, 3) G (0, 1, 4, 5) F 0-0-E (0, 1, 8, 9) 0 -00-(0, 2, 8, 10) -0-0 D (0, 4, 8, 12) --00

Procedure:

1) Find essentials; put them in the minimal form and

eliminate from table.

2) Remove: Dominated rows.

3) Remove: Dominating columns.

Repeat steps 1) - 3) until a minimized form is obtained

1) Essentials: $C, I \rightarrow f = C + I + ...$

Remove the columns/rows corresponding to the essential implicants

We redo the table:

	2	3
В		×
D	×	
G	x	×
-		

2) Remove: dominated rows

$$f = C + G + I = z't' + x'y' + yzt$$

We have the same minimal form as the K-map gave us (HW 16)!

HW 17.2 - assigned

Minimize the function:

f = A'B'DE' + E'B'C'D + B'DE' + B'CD + CDE' + BDE'