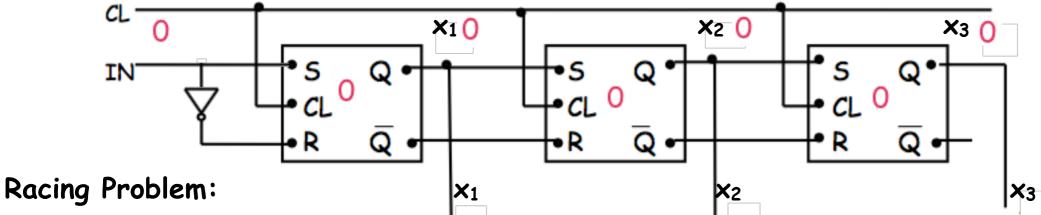

Racing Problem

CLASS 20

HW 21 - assigned

J-K Flip-Flop

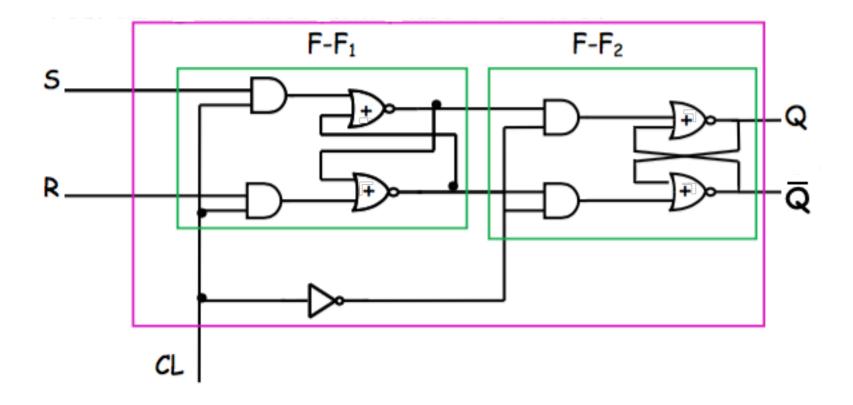
Describe its performance. For the truth table consider as inputs J and K only. Exclude the case J = K = 1 from this truth table, and treat it separately.


Consider the diagram:

We initialize $x_1 = x_2 = x_3 = 0$. For **IN** we input the string of signals **IN** = 0, 1, 0, 0, 0, in sequence.

It will allow us to see the shifting of the 1 as it progresses through x_1, x_2, x_3 ,

in time.



Instead of shifting, the signal 1 (or 0) may traverse the F-Fs too quickly: producing all outputs =1 (0) at same time. We will solve this problem later, and for now suppose it is solved, that is:

All S-R-CL Flop-Flops are such that the time needed for the signal to go through the Flip-Flop is greater than the time needed for CL to run the rising edge from OV(=0) to 2V(=1) [when F-F enabled].

IN = 0	Time counts	CL	IN	X 1	X 2	X 3	J
T (A = O	1	1	0	0	0	0	These F-Fs are described the next slide,
		0	0	0	0	0	and have the racing problem solved:
1	2	1	1	0	0	0	
		0	1	1	0	0	The signal goes
0	3	1	0	1	0	0	inside the F-F on phase 1
		0	0	0	1	0	and out of F-F on phase 0 of CL
0	4	1	0	0	1	0	
		0	0	0	0	1	
0	5	1	0	0	0	1	No change in outputs during
		0	0	0	0	0	phase 1 of CL.

<u>Racing Problem Solution is the following F-F:</u>

During the phase '1' of CL, the signal goes into the F-F₁ but gets stuck in-between F-F₁ and F-F₂, as F-F₂ is not enabled. During the subsequent phase '0' of CL, F-F₂ gets enabled, and the signal gets finally through F-F₂ and outputs the big F-F [\bigcirc].

```
(The big F-F []] solves the 'Racing Problem')
```