
CL=CSCI 160

CLASS  3



1 1 1 1 1 11



1

1 1 1 1

1

1

11 1 1

1



 Convert to decimal:

Solution

2r + 4 + r + 8 = 4r <–> r = 12

Proof

2412 + 1812 = 4012Prove: , that is:

2x12 + 4 + 1x12 + 8 = 4x12 , which is equivalent to:

28 + 20  = 48 True!



11 1 1 1 1
1
1 1 1 1 11





alternative 1        (Note: r is a divisor of 2685: factorize it!)

alternative 2           (Use quadratic formula)

Use same formula to solve quadratic 

equations to get the result:

Use formula to solve quadratic equations 

to get the result, but the coefficients are large!



(r-1)’s Complement-Representation

r = base

N =
integer part fraction part

n m n, m = number of locations

Definition
r = 2

How did you compute N1c = 1’s complement of N? By swapping 0 <–> 1, which is equivalent to:

N1c = 1 …… 1 .1 …… 1 – N
n m n m m

Base r: N(r-1)c = rn – r-m – N

How are our numbers stored?Very important:

 = 10 …… 0.0 …… 0 - 0.0 ……01 - N = 2n – 2-m – N

(N is a binary number!)



Algorithm for subtracting two numbers using only addition and the (r-1)’s complement

To perform   M – N     do: 

1) M + N(r - 1)c

2)
a)

b)

then add it to the l. s. d.

(= least significant digit) of result from 1). 

If there is no e. a. c.,

- (M + N(r - 1)c)(r - 1)c

Stop.

Result from 1)

If there is an e. a. c. (= end-around-carry = overflow),

Stop.

then the result is negative, and is obtained by taking the

(r-1)’s complement of what we obtained at 1); in other words, we compute: 



Example in binary + HW assigned

Ex-binary

1) 

r = 2 Suppose n = 4, m = 2

M: 1101.10

N: 1011.01

M:    1101.10 +
N1C: 0100.10

1
1

11 11

e.a.c.= +

0010.01

–>case2-a) 

ii) Swap M <–> N, to get to case 2-b)

M: 1011.01

N: 1101.10

M: 1011.01
N1C: 0010.01

+
1

no e.a.c. –>case2-b) 
–> –1’s compl.:

- 0010.01

HW (more to follow):  

Why does this algorithm work?

Alg (M-N): 2) a) e.a.c. –> add it to l.s.d.
b) no e.a.c. –> compute -(r-1)’s compl. of 1)

0010.00 1101.10

1) 

i)2-a) Path: 2-b) Path:

1
Apply algorithm Apply algorithm

Suppose:

to get M - N: to get M - N:

as expected



Why does this algorithm work?

Hint

1) M + N(r - 1)c M +=

2) Whether we follow a) or b) depends on the presence of an e. a. c.

What is the magnitude of the e.a.c.? It’s an ‘overflow’: 

e.a.c. = = rn On branch a) there is an e. a. c., which means we have:

M + rn – r-m – N rn

from 1)

It also means, that the case when

<––> M – N  ≥ r-m

=smallest positive number in our representation

<––>

<––> M > NorM - N > 0

M - N = 0 will take branch b), which means that 0 will be expressed as -0 by this Alg.
Continue justifying the computations in the branches 2-a) and 2-b) as HW.

We know:

≥

rn – r-m – N

e.a.c.



3-D

3-E




