CLASS 4

<u>HW</u> from class 3: <u>Why does this algorithm work?</u> <u>Justification</u> We started with: integer part fraction part

2) Whether we follow a) or b) depends on the presence of an e. a. c. What is the magnitude of the e.a.c.? It's an 'overflow' for our representation above: $e.a.c: 10 \dots 0 = r^n$ On <u>branch a</u>) there is an e. a. c., which means we have: $M + r^n - r^{-m} - N \ge r^n \quad \langle -- \rangle \quad M - N \ge (r^{-m}) \quad \langle -- \rangle$

 $M + r^{n} - r^{-m} - N \ge r^{n} \quad \langle -- \rangle \qquad M - N \ge r^{-m} \quad \langle -- \rangle = smallest positive number in our representation from 1)$

<--> M - N > 0 or M > N It also means, that the case when

M - N = 0 takes branch b), which means that 0 will be expressed as -0 by this Algorithm. We continue by justifying the computations in the branch a) and then branch b).

This is what we wanted. Note: 0 will be expressed as -0 by this Alg., as mentioned before.

Example in decimal

Remember: $N_{(r-1)c} = r^n - r^{-m} - N$ a) e.a.c. -> add it to l.s.d. <u>Alg (M-N):</u> 1) 2) $M + N_{(r-1)c}$ b) no e.a.c. -> compute -(r-1)'s compl. of 1) r = 10, n = 4, m = 2i) ii) Swap M <-> N, to get to case 2-b) <u>r - 1 = 9</u> 32.1 **M**: **M**: .64 N: .64 N: 32.1 1 1 1111 M: 0032.10 + 1) 1) M: 0000.64 + N_{9C}: 9999.35 N_{9C}: 9967.89 e.a.c.= (1) 0031.45 + 9968.53 no e.a.c. ->case2-b) -> -9's compl.: ->case2-a) -0031.46 0031.46

<u>NOTE</u>: Use this table describing various binary codes, for the last 3 exercises on the next page.

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

 Table

 Four Different Binary Codes for the Decimal Digits

1.14 Obtain the 1's and 2's complements of the following binary numbers:

(a)	1000000	(b) 0000	00000
(c)	11011010	(d) 0111	0110
(e)	10000101	(f) 1111	1111.

1.15 Find the 9's and the 10's complement of the following decimal numbers:

(a)	52,784,630	(b)	63,325,600
(c)	25,000,000	(d)	00,000,000.

1.24 Formulate a weighted binary code for the decimal digits, using weights

- (a)*6, 3, 1, 1
- (b) 6, 4, 2, 1
- 1.25 Represent the decimal number 5,137 in (a) BCD, (b) excess-3 code, (c) 2421 code, and (d) a 6311 code.

1.33* The state of a 12-bit register is 100010010111. What is its content if it represents

- (a) three decimal digits in BCD?
- (b) three decimal digits in the excess-3 code?
- (c) three decimal digits in the 84-2-1 code?
- (d) a binary number?

r's Complement-Representation

<u>r = 2</u>

How did you compute $N_{2c} = 2$'s complement of N? By swapping 0 <-> 1, and adding 1 to I.s.d., which is equivalent to computing the 1's complement and adding a 1 to I.s.d., which equals 2-m

 $N_{2c} = N_{1c} + 2^{-m} = 2^{n} - 2^{-m} - N + 2^{-m} = 2^{n} - N$

Base r:

$$N_{rc} = r^n - N$$