
CL=CSCI 160
CLASS 4

Why does this algorithm work?

We started with:

1) M + N(r - 1)c M + rn – r-m – N=

2) Whether we follow a) or b) depends on the presence of an e. a. c.

What is the magnitude of the e.a.c.? It’s an ‘overflow’ for our representation above:

e.a.c. = = rn On branch a) there is an e. a. c., which means we have:

M + rn – r-m – N rn

from 1)

It also means, that the case when

<––> M – N ≥ r-m

=smallest positive number in our representation

<––>

<––> M > NorM - N > 0

M - N = 0 takes branch b), which means that 0 will be expressed as -0 by this Algorithm.
We continue by justifying the computations in the branch a) and then branch b).

We know:

≥

HW from class 3:

Justification

e.a.c.

Remember:

branch a) - continued

 Branch a) says: “add the e.a.c. to the l.s.d.”. This means (s. ex) we have to subtract the value
of the e.a.c., which is rn and add a 1 to the l.s.d., which has the value r-m to the value from 1):

Here it is: M + rn – r-m – N - rn + r-m = M - N > 0 , which is what we wanted.

branch b) is taken when there is no e.a.c..
case when M - N 0≤

Branch b) says: compute the (r-1)’s complement from the result at 1) and give it a negative sign:
- (M + N(r - 1)c)(r - 1)c= - (rn – r-m – (M + rn – r-m – N)) =

= - (rn – r-m – M - rn + r-m + N) = - (-M + N) = -M + N ≥ 0.

This is what we wanted. Note: 0 will be expressed as -0 by this Alg., as mentioned before.

 From the Hint (class 3) we know that this is the

 - (M + rn – r-m – N)(r - 1)c =

- |M - N| ≤ 0 for

Example in decimal

i) r = 10, n = 4, m = 2

r - 1 = 9

M: 32.1
N: .64

1) M: 0032.10
N9C: 9999.35

+

0031.45

11 1 1 1

–>case2-a) 1
0031.46

ii) Swap M <–> N, to get to case 2-b)

+

N: 32.1
M: .64

1) M: 0000.64
N9C: 9967.89

+

9968.53 no e.a.c. –>case2-b)
–> –9’s compl.:

-0031.46

1

NOTE: Use this table describing various binary codes, for the last 3 exercises on the next page.

r’s Complement-Representation

r = base

Definition
r = 2

How did you compute N2c = 2’s complement of N? By swapping 0 <–> 1, and adding 1 to l.s.d.,

which is equivalent to computing the 1’s complement and adding a 1 to l.s.d., which equals 2-m

N2c = N1c + 2-m = 2n – 2-m – N + 2-m

Base r:

Nrc = rn – N

Remember:

= 2n – N

