MIDTERM REVIEW

Review **Topics**

(1) Number Representations

- (r 1)'s, r's complements, algorithm for subtraction, etc
- Find basis x if $(\ldots)_x = \ldots$
- (2) (3) Boolean algebra:
 - Expression manipulation
 - Boolean operators
- (4) Circuit logic diagram (gates)
 - B. functions: truth table

(4) distribution (both) (12) absorption (10) De Morgan

<u>(4) Gates</u>

Find the truth table + expression of f

$$f = ((x+y')xy'z')' =$$

$$= (x+y')' + x' + y + z =$$

$$= x'y + x' + y + z = x' + y + z$$

$$x' (12)$$

What can we say about the truth table for f? When do we have f = 0, and when is f = 1? It is 0 exactly when x'=0, and y=0, and z=0, that is for the triple x y z = 100.

In rest we have f = 1.

(3) Operators

<u>HW 8.1</u> (a) Prove: Inhibition is not associative

We chose
$$F_2 = x/y = x y'$$

 F_2 associative $\stackrel{\text{Det}}{\Leftrightarrow}$ $F_2 (F_2 (x, y), z) = F_2 (x, F_2 (y, z)) \quad \forall x, y, z$
 $f_2 (xy', z) = F_2 (x, yz')$
 $f_2 (xy', z) = F_2 (x, yz')$
 $f_1 (xy'z' = x(yz')'$
 $f_2 (xy'z') = x(y'z') \quad \forall x, y, z$
For each second time $\stackrel{\text{Det}}{\Rightarrow}$ $\exists x \in x \in z$, $y \in y(y'z)$

 F_2 not associative $\Leftrightarrow \exists x, y, z \mapsto xy'z' \neq x(y'+z)$

Make, say, RS = 1, while LS = 0: We need: x = 1 and (y' = 1 or z = 1)

There are multiple such counterexamples.

We only need one, for instance x = 1, z = 1, and any value for y, say y = 0. We have $LS = 0 \neq 1 = RS$. We just proved: F_2 is not associative

(3) Operators - continued <u>HW 8.1</u> - continued

(b) Prove: Exclusive OR (XOR) is commutative

$$F_{6}(x, y) = x y' + x' y = x \oplus y$$

$$F_{6} \text{ commutative} \stackrel{\text{Det}}{\Leftrightarrow} F_{6}(x, y) = F_{6}(y, x) \quad \forall x, y$$

$$\bigoplus \text{ commutative} \stackrel{\text{Det}}{\Leftrightarrow} x \oplus y = y \oplus x \quad \forall x, y$$

$$\bigoplus x y' + x' y = y x' + y' x \quad \forall x, y$$

The equality holds for both binary operations + and \cdot are commutative.

We just proved: F₆, that is Exclusive OR (XOR) is commutative

(2) Expression manipulation

(x+x')yz

Basically what we have been doing all along - old HW

2.6)
a)
$$(xy' + x'y)' \stackrel{(10)}{=} (x' + y) \cdot (x + y') = xy + x'y'$$

b) $((AB' + C) D' + E)' \stackrel{(10)}{=} ((A' + B) \cdot C' + D) E' \stackrel{(4)}{=} (A' + B + D)(C' + D) E'$
c) $((x + y' + z)(x' + z')(x + y))' \stackrel{(10)}{=} x' \cdot y \cdot z' + x \cdot z + x' \cdot y'$
More exercises: $x'y$
A. $xyz' + x'yz + xyz + x'yz' = xy + yz + x'y \stackrel{(4)}{=} y + yz = y$
 (4)
 (5)
 (2)
 $xy(z+z) = xy$
1

C. Prove: xy + x'z + yz = xy + x'z

Expand the terms that are in LS $\ RS$, namely yz

$$LS = xy + x'z + (x + x')yz = xy + x'z + xyz + x'yz =$$

= xy + x'z = RS

(1) Number Representations

Review conversions and operations in any base.

Let's do the r's /(r-1)'s complements and apply the algorithm for subtracting two numbers.

1. r = 16

Compute the (r-1)'s complement of $3ABF09_{hex}$. We have r - 1 = 16 - 1 = 15. Subtract each digit from F=15:

 $(3ABF09_{hex})_{15'C} = C540F6$ Let's do it via r = 2 (all computations are in binary). How? $3ABF09_{hex} = 0011 1010 1011 1111 0000 1001_2 \xrightarrow{1's complement}} 1100 0101 0100 0000 1111 0110_2 = C540F6_{hex}$

2. Let's apply t	the algorithm for sub	tracting two numbers		
r = 8	n = 4, m = 2 Ren	nember: N =		
<u>Alg (M-N):</u>	1) M + N(r - 1)c	 a) e.a.c> add it to l.s.d. b) no e.a.c> compute -(r-1)'s compl. of 1) 		
Let $M_8 = 167$	1.02, N ₈ = 2016.12	Perform M – N using the algorithm using (r-1)'s rep.		
$\frac{1 \text{ solution}}{M_8} = \frac{11}{16}71.0$ $N_{7c} = 5761.65$	<u>direct:</u> 2 + 5	<u>NOTE</u> We can do these conversions to other bases and back only if self-complementary:		
7652.67 No e.a.c., branch 2b), so do - 7'c		hex \longrightarrow binary Yes, for self-complementary		
Result: -0125.10 ₈ 2nd solution-convert to binary:		Decimal (2421) code		
M ₂ : 001 110 111 001. 000 010 N ₂ :010 000 001 110. 001 010		(8, 4, -2, -1) code Yes, for self-complementary		
M ₂ : 001 110 1	1 11 001. 000 010 +	Decimal BCD No, not self-complementary		
101 111 1 111 110 10	D1 010. 110 101	see next slide!		
No e.a.c., branch 2b), so do - 1'c			
-000 001 010 101.0	001 000 Convert to	base 8 to get same result as above.		

Remember:

Decimal ------ BCD No, not self-complementary

Table

Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110