
A brief guide to Makefiles for C++ Georgina Woo

Introduction

This guide provides a brief introduction to creating, using, and modifying Makefiles to
compile and link C++ projects.

1 Understanding the Project Structure

In this example, we have a C++ project with the following files:

• main.cpp — Contains the main() function that drives the program.

• Class.hpp — The header file for the Class class, which declares its members and
methods.

• Class.cpp — The implementation file for the Class class, defining the methods de-
clared in Class.hpp.

Note: The files Class.hpp and Class.cpp are paired, with Class.hpp containing the in-
terface (class declaration) and Class.cpp containing the implementation.

2 Starting the Makefile

We’ll start by specifying the compiler and compiler flags:

1. Open a text editor and create a new file named Makefile.

2. Define the C++ compiler and the flags used during compilation:

CXX = g++

CXXFLAGS = -std=c++17 -g -Wall -O2

Explanation: CXX specifies the C++ compiler (g++), and CXXFLAGS defines the flags
for the compiler:

• -std=c++17 — Specifies that the C++17 standard should be used.

• -g — Includes debugging information in the compiled files.

• -Wall — Enables all compiler warnings.

• -O2 — Enables a level of optimization to improve performance.

3 Defining the Target and Object Files

Next, we define the target program and the object files:

1. Specify the name of the final executable and the object files:

PROG ?= main

OBJS = Class.o main.o

Explanation: PROG is the name of the final executable, and OBJS lists the object files
that need to be linked to create the executable. Here, Class.o corresponds to the
compiled Class.cpp file, and main.o corresponds to the compiled main.cpp file.

Last Updated: September 3, 2024 1

A brief guide to Makefiles for C++ Georgina Woo

4 Compiling Source Files

We now define the rule for compiling the source files into object files:

1. Define the rule for converting .cpp files to .o files:

.cpp.o:

$(CXX) $(CXXFLAGS) -c -o $@ $<

Explanation: This rule tells make how to compile .cpp files into object files (.o files).
$< is the source file (e.g., Class.cpp), and $@ is the output file (e.g., Class.o).

5 Linking Object Files

Next, we define the rule for linking the object files into the final executable:

1. Define the rule for building the executable:

$(PROG): $(OBJS)
$(CXX) $(CXXFLAGS) -o $@ $(OBJS)

Explanation: This rule tells make to create the executable by linking the object files
(OBJS). $(PROG) is the target executable, and $(OBJS) are the object files to be linked.

6 Adding Clean and Rebuild Rules

Finally, we add rules for cleaning up the build directory and rebuilding the project:

1. Add a clean rule to remove generated files:

clean:

rm -rf *.o main

Explanation: The clean rule deletes all object files and the executable.

2. Add a rebuild rule to clean and then rebuild the project:

rebuild: clean all

Explanation: The rebuild rule first runs the clean rule and then rebuilds the project
by running the all target.

Last Updated: September 3, 2024 2

A brief guide to Makefiles for C++ Georgina Woo

7 Final Makefile

Here is the complete Makefile for our C++ project:

CXX = g++

CXXFLAGS = -std=c++17 -g -Wall -O2

PROG ?= main

OBJS = Class.o main.o

all: $(PROG)

.cpp.o:

$(CXX) $(CXXFLAGS) -c -o $@ $<

$(PROG): $(OBJS)

$(CXX) $(CXXFLAGS) -o $@ $(OBJS)

clean:

rm -rf *.o main

rebuild: clean all

Explanation: This Makefile automates the entire process of compiling and linking a C++
project. The commands are general enough to be reused for different projects by simply
changing the file names and target name.

8 Using the Makefile

1. To build the project, navigate to the directory containing the Makefile and type:

make

2. To clean the project, removing object files and the executable, type:

make clean

3. To rebuild the project from scratch, type:

make rebuild

Last Updated: September 3, 2024 3

A brief guide to Makefiles for C++ Georgina Woo

9 Extending the Makefile

In this section, we’ll modify the Makefile to handle a subclass that inherits from the base
class Class and change the output executable to program.

Assume the following additional files are present in the project:

• Subclass.hpp — The header file for the subclass Subclass, which inherits from Class.

• Subclass.cpp — The implementation file for Subclass.

We’ll update the Makefile to compile and link these additional files, resulting in an exe-
cutable named program.

Updated Makefile:

CXX = g++

CXXFLAGS = -std=c++17 -g -Wall -O2

PROG ?= program

OBJS = Class.o Subclass.o main.o

all: $(PROG)

.cpp.o:

$(CXX) $(CXXFLAGS) -c -o $@ $<

$(PROG): $(OBJS)

$(CXX) $(CXXFLAGS) -o $@ $(OBJS)

clean:

rm -rf *.o program

rebuild: clean all

Explanation:

• PROG is updated to program, so the final executable will be named program.

• OBJS now includes Subclass.o, which is the object file for Subclass.cpp.

• The clean rule is updated to remove the new executable program.

Using the Updated Makefile:

• Build the project by running make as before. The executable will now be named
program.

• Clean the project by running make clean, which will remove all object files and the
program executable.

Last Updated: September 3, 2024 4

A brief guide to Makefiles for C++ Georgina Woo

10 References

GNU Make Documentation: https://www.gnu.org/software/make/manual/make.html
Makefile Tutorial: https://makefiletutorial.com/
C++ Programming Resources: https://cplusplus.com/

Last Updated: September 3, 2024 5

https://www.gnu.org/software/make/manual/make.html
https://makefiletutorial.com/
https://cplusplus.com/

	Understanding the Project Structure
	Starting the Makefile
	Defining the Target and Object Files
	Compiling Source Files
	Linking Object Files
	Adding Clean and Rebuild Rules
	Final Makefile
	Using the Makefile
	Extending the Makefile
	References

