
Abstraction and OOP

Tiziana Ligorio
!1

Today’s Plan

Announcements

Recap

Abstraction

OOP

!2

Recap

Minimize software size and interactions 
 Simplify complex program to manageable level

 Break down into smaller problems

 Isolate functionalities

Minimize and control interactions

So how do we do this?

!3

Abstraction

!4

Abstraction Example

!5

Abstraction Example

You always use them,
switch from one to another
seamlessly and probably
don’t think too much
about them

!6

Printers

Come in all shapes and sizes

Can have different complex mechanisms  
 (Laser, Laserjet, Inkjet, Dot matrix …)

Easy to use  
 - something common to all of them - abstraction

!7

What is a printer?

!8

What is a printer?

A printer reproduces graphics or text
on paper 

 

!9

What is a printer?

A printer reproduces graphics or text
on paper 

Separate functionality from implementation  
(i.e. what can be done from how it’s actually done)

!10

Wall of Abstraction

Painstaking work to
design technology
and implement
printers

Press button  
Or  
Send print job from
application

Information barrier between device (program) use and how it works

Design and
 implementation

Usage

!11

Abstractions are imprecise

A printer reproduces graphics or text on paper

Wall of abstraction between implementer and client

How does client know how to use it?

 
 

!12

Abstractions are imprecise

A printer reproduces graphics or text on paper

Wall of abstraction between implementer and client

How does client know how to use it?

Provide an interface (what the user needs to interact) 
 In Software Engineering typically a set of
attributes (data or properties) and a set of actions

!13

Lecture Activity

Attributes (data): 

Actions (operations):  

 

Designing the interface:
think about what the user needs

to do / know about

!14

Interface for Printer

Attributes (data): 
 Ink level 
 Paper level 
 Error codes 

Actions (operations): 
 Print 
 Rotate (landscape/portrait) 
 Color / Black & White 

How this is done

is irrelevant to
the client

!15

Information Hiding

Interface —> client doesn’t have to know about the
inner workings

Actually client shouldn’t know of or have access to
implementation details

It is dangerous to allow clients to bypass interface 

In this course

it always means software

Safe Programming

!16

Reasons for Information Hiding

Harmful for client to tamper with someone else’s
implementation (code)

- Voluntarily/involuntarily break it - misuse it

- Reduces flexibility and modifiability by locking
implementation in place

- Increases number of interactions between modules

!17

Object Oriented  
Design

!18

Principles of Object Oriented
Programming (OOP)

Encapsulation 
 Objects combine data and operations

Information Hiding 
 Objects hide inner details

Inheritance 
 Objects inherit properties from other objects

Polymorphism 
 Objects determine appropriate operations at execution

!19

Principles of Object Oriented
Programming (OOP)

Encapsulation 
 Objects combine data and operations

Information Hiding 
 Objects hide inner details

Inheritance 
 Objects inherit properties from other objects

Polymorphism 
 Objects determine appropriate operations at execution

Coming soon

!20

Object-Oriented Solution

Use classes of objects  
 Combine attributes and actions 
 data members + member functions

Create a good set of modules 
 Self contained unit of code

!21

Encapsulation

!22

!23

Class

class SomeClass  
{  

access_specifier // can be private, public or protected

data_members // variables used in class

member_functions // methods to access data members

}; // end SomeClass

!24

Class

Language mechanism for

 Encoding abstraction

 Enforce encapsulation

 Separate interface from implementation

A user-defied data type that bundles together data
and operations on the data

!25

You have already been
working with classes.

Which ones?

Information Hiding

!26

Class

class SomeClass  
{  

public:  
// public data members and member functions go here

private:  
// private data members and member functions go here

}; // end SomeClass

Access specifier

Access specifier

Information
Hiding

!27

!28

!29

Your program:

std::string s = “aa”;
std::string s2 = “bb”;

std::string

s.append(s2);

“aabb”

#ifndef SOME_CLASS_HPP_  
#define SOME_CLASS_HPP_  
 
#include <somelibrary>  
#include “AnotherClass.hpp”  
 
 
class SomeClass  
{  
 
public:  

SomeClass(); //Constructor  
int methodOne();  
bool methodTwo();  
bool methodThree(int

someParameter);  
 

 
private:  

int data_member_one_;  
bool data_member_two_;

}; //end SomeClass  
 
#endif

#include “SomeClass.hpp”  
 
SomeClass::SomeClass()  
{  

//implementation here  
}

int SomeClass::methodOne()  
{  

//implementation here  
}

bool SomeClass::methodTwo()  
{  

//implementation here  
}

bool SomeClass::methodThree(int

someParameter)  
{  

//implementation here  
}

SomeClass.hpp
(same as SomeClass.h)

SomeClass.cpp

Interface Implementation

!30

Include Guards:
Tells linker “include only if it has not been
included already by some other module”

#ifndef SOME_CLASS_HPP_  
#define SOME_CLASS_HPP_  
 
#include <somelibrary>  
#include “AnotherClass.hpp”  
 
 
class SomeClass  
{  
 
public:  

SomeClass(); //Constructor  
int methodOne();  
bool methodTwo();  
bool methodThree(int

someParameter);  
 

 
private:  

int data_member_one_;  
bool data_member_two_;

}; //end SomeClass  
 
#endif

#include “SomeClass.hpp”  
 
SomeClass::SomeClass()  
{  

//implementation here  
}

int SomeClass::methodOne()  
{  

//implementation here  
}

bool SomeClass::methodTwo()  
{  

//implementation here  
}

bool SomeClass::methodThree(int

someParameter)  
{  

//implementation here  
}

SomeClass.hpp
(same as SomeClass.h)

SomeClass.cpp

Interface Implementation

!31

Separate Compilation
Include A.hpp Include B.hpp Include C.hpp main

!32

g++ -o my_program A.cpp B.cpp C.cpp main.cpp

Name of
executable

Both Compile
and Link

A.o B.o C.o main.o

Compile and Link
separately with g++

g++ -c A.cpp B.cpp C.cpp main.cpp  
 
will generate

A.o B.o C.o main.o

Then

g++ -o my_program A.o B.o C.o main.o

Will link the object files into a single executable named my_program

!33

Class Recap
Access specifiers: determines what data or methods are public, private or
protected (more on protected later)

Data members: the attributes/data

Member functions: the operations/actions available on the data  
 - Mutator functions: modify data members

 - Accessor functions: retrieve the value of data members 
 Use const to enforce/indicate it will not modify the object 
 e.g. string getName() const;

- Constructor(s)

- Destructor

Take care of what happens when
object goes in/out of scope

!34

Class / Object

A class is a user-defined data type that bundles
together data and operations on the data

Class: type (like int)

Object: instantiation of the class (like x - as in int x)

Just like variables, objects have a scope  
 - they are born (instantiated/constructed) 
  
 - they are killed (deallocated/destroyed)

!35

Object instantiation and usage

#include “SomeClass.h”  
 
 
int main()  
{  
 
 

SomeClass new_object; /instantiation of SomeClass calls constructor

int my_int_variable = new_object.methodOne(); 
bool my_bool_variable = new_object.methodTwo();  
 

 
return 0;  

} //end main  

object (dot) method
calls the member function for this object

!36

Constructor is
called here

Constructorsclass SomeClass  
{  

public:  
SomeClass(); //default constructor  
SomeClass(parameter_list); //parameterized constructor  
// public data members and member functions go here

private:  
// private members go here

};// end SomeClass

DECLARATION / INTERFACE:

Default Constructor automatically supplied by
compiler if no constructors are provided. Primitive
types are initialized to 0

If only Parameterized Constructor is provided,
compiler WILL NOT supply a Default Constructor
and class MUST be initialized with parameters

!37

Executed when object is declared.
Initializes member variables and does whatever

else may be required at instantiation

Constructorsclass SomeClass  
{  

public:  
SomeClass(); //default constructor  
SomeClass(parameter_list); //parameterized constructor  
// public data members and member functions go here

private:  
// private members go here

};// end SomeClass

IMPLEMENTATION:

SomeClass::SomeClass()  
{  
}// end default constructor

OR: SomeClass::SomeClass():  
member_var1_(initial value),  
member_var2_(initial value)  
{  
}// end default constructor

SomeClass::SomeClass(type parameter_1, type parameter_2):  
member_var1(parameter_1), member_var2(parameter_2)  
{  
}//end parameterized constructor Member Initializer List!38

DECLARATION / INTERFACE:

Constructorsclass SomeClass  
{  

public:  
SomeClass() = default; //default constructor  
SomeClass(parameter_list); //parameterized constructor  
// public data members and member functions go here

private:  
// private members go here

};// end SomeClass

IMPLEMENTATION:

SomeClass::SomeClass(type parameter_1, type parameter_2):  
member_var1(parameter_1), member_var2(parameter_2)  
{  
}//end parameterized constructor !39

DECLARATION / INTERFACE:

C++ 11

Tells compiler to provide
default constructor!

Destructor

class SomeClass  
{  

public:  
SomeClass();  
SomeClass(parameter_list);//parameterized constructor  
// public data members and member functions go here 
~SomeClass(); // destructor

private:  
// private data members and member functions go here

};// end SomeClass

Default Destructors automatically supplied by
compiler if not provided.

Must provide Destructor to free-up memory
when SomeClass performs dynamic memory
allocation

!40

Executed when object goes
out of scope or explicitly

deleted to release memory

Lecture Activity

Write the interface for a printer class:

class Printer  
{  

access_specifier // can be private, public or protected

data_members // variables used in class

member_functions // methods to access data members

}; // end Printer

!41

Interface as Operation Contract

Documents use and limitations of a class and its
methods

Function Prototype and Comments MUST specify:  
 - Data flow  
 Input => parameters 
 Output => return 
 - Pre and Post Conditions

!42

Operation Contract

In Header file:

/** sorts an array into ascending order  
// @pre 1 <= number_of_elements <= MAX_ARRAY_SIZE  
// @post an_array[0] <= an_array[1] <= ...  
// <= an_array[number_of_elements-1];  
// number_of_elements is unchanged  
// @param an_array of values to be sorted  
// @param number_of_elements contained in an_array  
// @return true if an_array is sorted, false otherwise  
*/  
bool sort(int an_array[], int number_of_elements);  

!43

Function prototype

Back to some principles of
Software Engineering

!44

Unusual Conditions

Values out of bound, null pointer, inexistent file…

How to address them (strive for fail-safe programming):  
 State it as precondition  
  
 Return value that signals a problem  
 Typically a boolean to indicate success or failure 
 
 Throw an exception (later in semester)  

!45

Solution guidelines

Many possible designs/solutions

Often no clear best solution

“Better” solution principles: 
 High cohesion  
 Loose Coupling

!46

Cohesion

Performs one well-defined task

Well named => self documenting  
 e.g. sort()  

Easy to reuse  
Easy to maintain 
Robust (less likely to be affected by change)

SORT ONLY!!!
E.g. If you want to output,
do that in another function

!47

Coupling

Measure of dependence (interactions) among
modules 
 i.e. share data structures or call each other’s  
 methods

Minimize but cannot eliminate 
 Objects must collaborate!!! Minimize complexity

!48

Reduce Coupling

Methods should only call other methods:

- defined within same class

- of argument objects

- of objects created within the method

- of objects that are data members of the class

!49

Control Interaction

Pass-by-value
bool my_method(int some_int);

Pass-by-reference if need to modify object
bool my_method(ObjectType& some_object);

Pass-by-constant-reference if function doesn’t modify
object
bool my_method(const ObjectType& some_object);

!50

Modifiability

No global variables EVER!!!

Named Constants
const int NUMBER_OF_MAJORS = 160;

int scores [NUMBER_OF_MAJORS];  
for(index = 0 through NUMBER_OF_MAJORS - 1)  
 Process

!51

Modifiability

!52

Readability
Write self-commenting code

Important to strike balance btw readable code and comments

- don’t write the obvious in comments
x += m * v1; //multiply m by v1 and add result to x

Use descriptive names for variables and methods

!53

BAD!!!

/**@return: the average of values in scores*/
double getAverage(double* scores, int size)
{

double total = 0;

for (int i = 0; i < size; i++)
{

total += scores[i];
}

return (total / (double)size);
}

Naming Conventions

string my_variable;

or

string myVariable;

Classes ALWAYS
start with capital
MyClass

!54

In this course I will strive for:
class MyClass

MyClass class_instance;

string my_variable;

string my_member_variable_;

void myMethod();

int MY_CONSTANT;

https://google.github.io/styleguide/cppguide.html

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments

Be consistent!!!

https://google.github.io/styleguide/cppguide.html

