
Inheritance

Tiziana Ligorio
!1

Today’s Plan

Recap

Useful C++ / OOP

Intro to Inheritance

Maybe More useful C++ /
OOP

!2

First a Recap and Review

OPP 
 Abstraction 
 Encapsulation 
 Information Hiding

Classes  
 Public Interface 
 Private Implementation 
 Constructors / Destructors

!3

#ifndef SOME_CLASS_H_  
#define SOME_CLASS_H_  
 
#include <somelibrary>  
#include “AnotherClass.h”  
 
 
class SomeClass  
{  
 
public:  

SomeClass(); //Constructor  
int methodOne();  
bool methodTwo();  
bool methodThree(int

someParameter);  
 

 
private:  

int data_member_one_;  
bool data_member_two_;

}; //end SomeClass  
 
#endif

#include “SomeClass.hpp”  
 
SomeClass::SomeClass()  
{  

//implementation here  
}

int SomeClass::methodOne()  
{  

//implementation here  
}

bool SomeClass::methodTwo()  
{  

//implementation here  
}

bool SomeClass::methodThree(int

someParameter)  
{  

//implementation here  
}

SomeClass.hpp
(same as SomeClass.h)

SomeClass.cpp

Interface

!4

Include Guards:
Tells linker “include only if it has not been
included already by some other module”

Implementation

Review Some Useful
Concepts

!5

Default Arguments

!6

void point(int x = 3, int y = 4);

point(1,2); // calls point(1,2)
point(1); // calls point(1,4)
point(); // calls point(3,4)

Order Matters!
Parameters without default

arguments must go first.

Default Arguments

Similarly:

!7

void point(int x = 3, int y = 4);

point(1,2); // calls point(1,2)
point(1); // calls point(1,4)
point(); // calls point(3,4)

Person(int id, string first = "", string last = "");

Person(143); // calls Person(143,””, “”)
Person(143, “Gina”); // calls Person(“143”,”Gina”, “”)
Person(423, “Nina”, “Moreno”); // calls Person(423,“Nina”,”Moreno”)

Order Matters!
Parameters without default

arguments must go first.

Default Arguments

!8

void point(int x = 3, int y = 4);

point(1,2); // calls point(1,2)
point(1); // calls point(1,4)
point(); // calls point(3,4)

Order Matters!
Parameters without default

arguments must go first.

Animal(std::string name = "", bool domestic = false, bool predator = false);

IS DIFFERENT FROM

Animal(std::string name, bool domestic = false, bool predator = false);

Overloading Functions

int someFunction()  
{  
 
//implementation here

} // end someFunction  

int someFunction(string
some_parameter)  
{  

//implementation here  
 
} // end someFunction

int main()  
{  
 

int x = someFunction();

int y = someFunction(my_string);

//more code here

} // end main

Same name, different parameter list (different function prototype)

!9

Friend Functions

Functions that are not members of the class but CAN
access private members of the class

 

!10

Friend Functions

Functions that are not members of the class but CAN
access private members of the class

Violates Information Hiding!!!

Yes, so don’t do it unless appropriate 
and controlled

!11

Friend Functions

class SomeClass  
{  

public:  
// public member functions go here  
friend returnType someFriendFunction(parameter list);  

private:  
int some_data_member_;

}; // end SomeClass

IMPLEMENTATION (SomeClass.cpp):

DECLARATION:

returnType someFriendFunction(parameter list)  
{  

// implementation here  
some_data_member_ = 35; //has access to private data  

}

Not a member function

!12

Operator Overloading

Desirable operator (=, +, -, == …) behavior may not be well
defined on objects

class SomeClass  
{  

public:  
// public data members and member functions go here  
friend bool operator== (const SomeClass& object1,  

const SomeClass& object2);

private:  
// private members go here

}; // end SomeClass

!13

Operator Overloading

bool operator==(const SomeClass& object1,  
const SomeClass& object2)  

{  
return ((object1.memberA_ == object2.memberA_) &&  

(object1.memberB_ == object2.memberB_) && …);  
}

IMPLEMENTATION (SomeClass.cpp):

Not a member function

!14

Enum
A user defined datatype that consist of integral
constants

Why? Readability 

enum season {SPRING, SUMMER, AUTUMN, WINTER };

enum animal_type {MAMMAL, FISH, BIRD};

By default = 0, 1, 2, …

To change default:
enum ta_role {MAMMAL = 5, FISH = 10, BIRD = 20};

!15

Type name (like int) Possible values:
like 0,1, 2, …

Inheritance

!16

From General to Specific

What if we could inherit functionality from one class
to another?

We can!!!

Inherit public members of another class

!17

Basic Inheritance

class Printer  
{  
public:  

//Constructor, destructor  
 

void setPaperSize(int size);  
void setOrientation(const string& orientation);  
void printDocument(const string& document);  

private:  
// stuff here  

}; //end Printer

!18

Basic Inheritance
class Printer  
{  
public:  

//Constructor, destructor  
 

void setPaperSize(int size);  
void setOrientation(const string& orientation);  
void printDocument(const string& document);  

private:  
// stuff here  

}; //end Printer

class BatchPrinter  
{  
public:  

//Constructor, destructor  
void addDocument(const string& document);  
void printAllDocuments();  

private:  
vector<string> documents;  

}; //end BatchPrinter
!19

Basic Inheritance
class Printer  
{  
public:  

//Constructor, destructor  
 

void setPaperSize(int size);  
void setOrientation(const string& orientation);  
void printDocument(const string& document);  

private:  
// stuff here  

}; //end Printer

class BatchPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void addDocument(const string& document);  
void printAllDocuments();  

private:  
vector<string> documents;  

}; //end BatchPrinter

Inherited members are public
could be private or  

protected - more on this later

!20

Basic Inheritance

void initializePrinter(Printer& p) //some initialization function  
BatchPrinter batch;  
initializePrinter(batch); //legal because batch is-a printer

Think of argument types as specifying minimum requirements

Base class
Superclass

Derived Classes
Subclasses

is-a is-a

!21

Overloading vs Overriding

Overloading (independent of inheritance): Define new
function with same name but different parameter list
(different signature or prototype) 
 int someFunction(){ }  

int someFunction(string some_string){ }

Overriding: Rewrite function with same signature in
derived class 
 int BaseClass::someMethod(){ }  

int DerivedClass::someMethod(){ }

!22

class Printer  
{  
public:  

//Constructor, destructor  
 

void setPaperSize(int size);  
void setOrientation(const string& orientation);  
void printDocument(const string& document);  

private:  
// stuff here  

}; //end Printer

class GraphicsPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void setPaperSize(const int size);  
void printDocument(const Picture& picture);//some Picture object

 
 
private:  

//stuff here  
}; //end GraphicsPrinter

Overloads printDocument()

Overrides setPaperSize()

!23

Printer base_printer;  
GraphicsPrinter graphics_printer;  
Picture picture;  
// initialize picture here  
string document;  
// initialize document here

base_printer.setPaperSize(11); //calls Printer function  
graphics_printer.setPaperSize(60); // Overriding!!!  
graphics_printer.setOrientation(“landscape”); //inherited  
 
graphics_printer.printDocument(string);//calls Printer inherited function  
graphics_printer.printDocument(picture); // Overloading!!!

Printer

setPaperSize(int)
setOrientation(string)

printDocument(string)

GraphicsPrinter

setPaperSize(int)

printDocument(Picture)

main()

!24

protected access specifier

class SomeClass  
{  

public:  
// public members available to everyone

protected:  
// protected members available to class members  
// and derived classes  

 
private:  

// private members available to class members ONLY

}; // end SomeClass

Important Points about
Inheritance

Derived class inherits all public and protected members
of base class

Does not have direct access to base class private members.
However, can call public functions of the base class, which in
turn do have access base classe's private members

Does not inherit constructor and destructor

Does not inherit assignment operator

Does not inherit friend functions and friend classes

!26

Constructors

A class needs user-defined constructor if must initialize
data members

Base-class constructor always called before derived-class
constructor

If base class has only parameterized constructor, derived
class must supply constructor that calls base-class
constructor explicitly

!27

Constructors
class BaseClass  
{  
public:  

//stuff here  
 

private:  
//stuff here  

}; //end BaseClass

class DerivedClass: public BaseClass  
{  
public:  

DerivedClass();  
//stuff here  

 
private:  

//stuff here  
}; //end DerivedClass  
 
DerivedClass::DerivedClass()  
{  

//implementation here  
}

DerivedClass my_derived_class;
//BaseClass compiler-supplied default constructor called
//then DerivedClass constructor called

main()

!28

INTERFACE

IMPLEMENTATION

Constructors
class BaseClass  
{  
public:  

BaseClass();  
//may also have other  
//constructors  

private:  
//stuff here  

}; //end BaseClass

BaseClass::BaseClass()  
{  

//implementation here  
}

class DerivedClass: public BaseClass  
{  
public:  

DerivedClass();  
//stuff here  

 
private:  

//stuff here  
}; //end DerivedClass  
 
DerivedClass::DerivedClass()  
{  

//implementation here  
}

DerivedClass my_derived_class;
//BaseClass default constructor called
//then DerivedClass constructor called

main()

!29

INTERFACE

IMPLEMENTATION

Constructors
class BaseClass  
{  
public:  

BaseClass(int value);  
//stuff here  

 
private:  

int base_member_;  
}; //end BaseClass

BaseClass::  
BaseClass(int value):
base_member_(value)  
{  

//implementation here  
}

class DerivedClass: public BaseClass  
{  
public:  

DerivedClass();  
//stuff here  

 
private:  

//stuff here  
}; //end DerivedClass  
 
DerivedClass::DerivedClass()  
{  

//implementation here  
}

DerivedClass my_derived_class;
//PROBLEM!!! there is no default constructor to be called
//for BaseClass

main()

!30

INTERFACE

IMPLEMENTATION

Constructors
class BaseClass  
{  
public:  

BaseClass(int value);  
//stuff here  

 
private:  

int base_member_;  
}; //end BaseClass

BaseClass::  
BaseClass(int value):
base_member_(value)  
{  

//implementation here  
}

class DerivedClass: public BaseClass  
{  
public:  

DerivedClass();  
//stuff here  

 
private:  
 static const int INITIAL_VAL = 0;  
}; //end DerivedClass  
 
DerivedClass::DerivedClass():  
BaseClass(INITIAL_VAL)  
{  

//implementation here  
}

DerivedClass my_derived_class;
// BaseClass constructor explicitly called by DerivedClass  
//constructor

main()

Fix

!31

INTERFACE

IMPLEMENTATION

Destructors

Destructor invoked if:  
 - program execution left scope containing object
 definition 
 - delete operator was called on object that was
 created dynamically

!32

Destructors

Derived class destructor always causes base class
destructor to be called implicitly

Derived class destructor is called before base class
destructor

!33

BaseClass

DerivedA

DerivedB

DerivedC

Order of calls to constructors
when instantiating a DerivedC object:

BaseClass()  
DerivedA()  
DerivedB()  
DerivedC()

Order of calls to destructors
when instantiating a DerivedC object:
 
~DerivedC()
~DerivedB()
~DerivedA()
~BaseClass()

!34

Basic Inheritance

No runtime cost  
In memory DerivedClass is simply BaseClass with
extra members tacked on the end

Basically saving to re-write BaseClass code

!35

