
Abstract Data Types &
Templates

!1

Abstract Data Type

!2

Data and Abstraction

Operations on data are central to most solutions

Think abstractly about data and its management

Typically need to  
 Organize data 
 Add data 
 Remove data 
 Retrieve 
 Ask questions about data 
 Modify data

!3

Abstract Data Type

A collection of data (container) and a set of operations on
the data 
Carefully specify and ADT’s operations before you
implement them

—————————————————————————

In C++ member variables and member functions implement
the Abstract Data Type

Design

Implementation

!4

OOP

!5

class someADT  
{  

access_specifier // can be private, public or protected  
data_members // variables used in class  
member_functions // methods to access data members

}; // end someClass

Class

Design

Implementation

someADT.hpp

someADT.cpp

!6

Designing an ADT
What data does the problem require?  
 Data 
 Organization

What operations are necessary on that data?  
 Initialize 
 Display 
 Calculations 
 Add 
 Remove 
 Change

!7

Throughout the semester we will consider several
ADTs

Let’s start from the simplest possible!

!8

Design the Bag ADT

Contains things

Container or Collection of Objects

Objects are of same type

No particular order

Can contain duplicates

!9

Lecture Activity

Design step 1 — Identify Behaviors  
Bag Operations:  
1. 
2. 
3. 
4. 
5. 
6. 
…

!10

Design step 1: Identify Behaviors
Bag Operations:  
 1. Add an object to the bag 
 2. Remove an occurrence of a specific object form the
 bag if it’s there 
 3. Get the number of items currently in the bag 
 4. Check if the bag is empty 
 5. Remove all objects from the bag 
 6. Count the number of times a certain object is found
 in the bag 
 7. Test whether the bag contains a particular object 
 8. Look at all the objects that are in the bag

!11

Specify Data and Operations

//Task: reports the current number of objects in Bag  
//Input: none  
//Output: the number of objects currently in Bag 
getCurrentSize()  
 
//Task: checks whether Bag is empty  
//Input: none  
//Output: true or false according to whether Bag is empty 
isEmpty()  
 
//Task: adds a given object to the Bag  
//Input: new_entry is an object  
//Output: true or false according to whether addition succeeds 
add(new_entry)  
 
//Task: removes an object from the Bag  
//Input: an_entry is an object  
//Output: true or false according to whether removal succeeds 
remove(an_entry)

Pseudocode

!12

Specify Data and Operations

//Task: removes all objects from the Bag  
//Input: none  
//Output: none  
clear()  
 
//Task: counts the number of times an object occurs in Bag  
//Input: an_entry is an object  
//Output: the int number of times an_entry occurs in Bag 
getFrequencyOf(an_entry)  
 
//Task: checks whether Bag contains a particular object  
//Input: an_entry is an object  
//Output: true of false according to whether an_entry is in Bag 
contains(an_entry)  
 
//Task: gets all objects in Bag  
//Input: none  
//Output: a vector containing all objects currently in Bag 
toVector()

!13

Vector
A container similar to a one-dimensional array

Different implementation and operations

STL (C++ Standard Template Library)

#include <vector>  
…  
vector<type> vector_name;

e.g.

vector<string> student_names;

In this course cannot use STL or particular functions for projects unless
specified so by instructions!

!14

What’s next?

Finalize the interface for your ADT => write the actual code

… but we have a problem!!!

!15

What’s next?
Finalize the interface for your ADT => write the actual code

… but we have a problem!!!

We said Bag contains objects of same type  
 What type?

To specify member function prototype we need to know  
 
 //Task: adds a given object to the Bag  

//Input: new_entry is an object  
//Output: true or false according to whether addition succeeds 
bool add(type??? new_entry);

!16

Templates

!17

Motivation

We don’t want to write a new Bag ADT for each type
of object we might want to store

Want to parameterize over some arbitrary type

Useful when implementing an ADT without locking
the actual type

An example are STL containers  
 e.g. vector<type>

!18

Declaration

#ifndef BAG_H_  
#define BAG_H_  
template<typename ItemType>  
class Bag // this is a template definition  
{

//class declaration here

};  
#include “Bag.cpp”  
#endif //BAG_H_

Explained next

!19

Declaration

#ifndef BAG_H_  
#define BAG_H_  
template<typename ItemType> // this is a template definition  
class Bag  
{

//class declaration here

};  
#include “Bag.cpp”  
#endif //BAG_H_

Explained next

!20

Sometimes T is used instead of
ItemType

typename here could be replaced
by class

often interchangeable but can make

Implementation

#include “Bag.hpp”  
 
template<typename ItemType>  
bool Bag<ItemType>::add(const ItemType& new_entry){  

//implementation here  
}

//more member function implementation here

!21

Instantiation

#include “Bag.hpp”

int main()  
{

Bag<string> string_bag;  
Bag<int> int_bag;  
Bag<someObject> some_object_bag;

std::vector<int> numbers;  
 //stuff here

return 0;

}; // end main

!22

Separate Compilation

Include .hpp Include .hpp Include .hpp main

!23

Linking with Templates

Include .hpp Include .hpp Include .hpp

template<>

main

!24

Linking with Templates
Always #include the .cpp file in the .hpp file

#ifndef MYTEMPLATE_H_  
#define MYTEMPLATE_H_  
template<typename ItemType>  
class MyTemplate  
{

//stuff here

} //end MyTemplate  
#include “MyTemplate.cpp”  
#endif //MYTEMPLATE_H_

Do not add MyClass.cpp to project in your environment and do not include

it in the command to compile 
g++ -o my_program main.cpp  
NOT g++ -o my_program MyTemplate.cpp main.cpp

!25

IMPORTANT

Make sure you understand  
and don’t have problems 
with multi-file compilation  
using templates

Lecture Activity
template<typename ItemType> //this is a template definition  
class MyTemplate  
{
public:  

void setData(ItemType some_data); //mutator  
ItemType getData() const; //accessor  

 
private:  

ItemType my_data_;//this is the only private data member
}

Write a main() function that instantiates 3 different MyTemplate objects with
different types (e.g. int, string, bool) and makes calls to their member
functions and show the output. E.g:  
 
 MyTemplate<double> double_object;  

double_object.setData(3.0);  
cout << double_object.getData() << endl;//outputs 3.0

!26

Try It At Home

!27

Write a dummy MyTemplate interface and implementation
(MyTemplate.hpp, MyTemplate.cpp)

Test it in main()
Make sure you can compile a templated class

(REMEMBER YOU DON’T COMPILE IT!!!)
YOU WILL THANK ME

template<typename ItemType>  
class Bag  
{  
public:  

/** Gets the current number of entries in this bag.  
@return The integer number of entries currently in the bag. */ 
int getCurrentSize() const;

/** Checks whether this bag is empty.  
@return True if the bag is empty, or false  
if not. */  
bool isEmpty() const;  

/** Adds a new entry to this bag.  
@post If successful, new_entry is stored in the bag  
and the count of items in the bag has increased by 1.  
@param new_entry The object to be added as a new entry.  
@return True if addition was successful, or false if not. */ 
bool add(const ItemType& new_entry);

/** Removes one occurrence of a given entry from this bag, if possible.  
@post If successful, an_entry has been removed from the bag  
and the count of items in the bag has decreased by 1.  
@param an_entry The entry to be removed.  
@return True if removal was successful, or false if not. */ 
bool remove(const ItemType& an_entry);

Means: “this method will not
modify the object”

!28

Means: “this method will not
modify the parameter”

/** Removes all entries from this bag.  
@post Bag contains no items, and the count of items is 0. */  
void clear();

/** Counts the number of times a given entry appears in bag.  
@param an_entry The entry to be counted.  
@return The number of times an_entry appears in the bag. */ 
int getFrequencyOf(const ItemType& an_entry) const;  

/** Tests whether this bag contains a given entry.  
@param an_entry The entry to locate.  
@return True if bag contains an_entry, or false otherwise. */ 
bool contains(const ItemType& an_entry) const;  

/** Fills a vector with all entries that are in this bag.  
@return A vector containing all the entries in the bag. */ 
std::vector<ItemType> toVector() const;  

}; // end BagInterface
!29

Recap

We designed a Bag ADT by defining the operations
on the data

We templatized it so we can store any data type

NEXT: Implementation

!30

