
Pointers and Dynamic
Memory Allocation

Tiziana Ligorio
!1

Constructors Clarifications

 
 - Multiple constructors, only one is invoked

 
  

 
 

!2

#include “Animal.hpp"  
 
int main()  
{  
 

Animal nameless; //calls default constructor  
 

Animal tiger(“tiger”); //calls parameterized const. w/ default args  
 

Animal shark(“shark”, false, true); //calls parameterized constructor
 //with all arguments  

//more code here . . .  
 
}; //end main

class Animal
{
public:
 Animal(); //default constructor 
 
 Animal(std::string name, bool domestic = false,  
 bool predator = false);//parameterized constructor 

 // more code here  
 
 
 
};// end Animal

main()

!3

Constructors Clarifications

 
 - Multiple constructors, only one is invoked

 
 - Initialize ALL data members in parameterized
 constructor, not only those with arguments

 
- Explicitly call Base class constructor only if needs
argument values or if there is no default to be called

!4

#include “Fish.hpp"  
 
 
 
//default constructor
Fish::Fish(): venomous_(0){}  
 
 
//parameterized constructor
Fish::Fish(string name, bool domestic, bool predator):

Animal(name, domestic, predator), venomous_(0){}  
 

//more code here . . .  
 

class Fish
{
public:
 Fish(); //default constructor 
 
 Fish(std::string name, bool domestic = false,  
 bool predator = false);//parameterized
constructor 

 // more code here 
 
 
 
};// end Fish

Fish.cpp

!5

Base class (Animal)
constructor always called

first. It will initialize derived
data members.

Base class parameterized
constructor needs access to
argument values and must be

called explicitly.

Pointer Variables

A typed variable whose value is the address of
another variable of same type

!6

int x = 5;  
int y = 8;  
int *p, *q = nullptr; //declares two int pointers

. . .  
 

!7

Type Name Address Data
...
int x 0x12345670 5
int y 0x12345674 8

int pointer p 0x12345678 nullptr
int pointer q 0x1234567C nullptr

...

Program Stack

Make sure you do this if not assigning a value!

int x = 5;  
int y = 8;  
int *p, *q = nullptr; //declares two int pointers

. . .  
p = &x; // sets p to the address of x  
q = &y; // sets q address of y

!8

Type Name Address Data
...
int x 0x12345670 5
int y 0x12345674 8

int pointer p 0x12345678 0x12345670
int pointer q 0x1234567C 0x12345674

...

Program Stack

Make sure you do this if not assigning a value!

int x = 5;  
int y = 8;  
int *p, *q = nullptr; //declares two int pointers

. . .  
p = &x; // sets p to the address of x  
q = &y; // sets q address of y

!9

We won’t do much of this

Type Name Address Data
...
int x 0x12345670 5
int y 0x12345674 8

int pointer p 0x12345678 0x12345670
int pointer q 0x1234567C 0x12345674

...

Program Stack

Make sure you do this if not assigning a value!

Recall Dynamic Variables

What if I cannot statically allocate data? (e.g. will be
reading from input at runtime)

!10

Recall Dynamic Variables

What if I cannot statically allocate data? (e.g. will be
reading from input at runtime)

Allocate dynamically with new

!11

Dynamic Variables
Created at runtime in the memory heap  
using operator new

Nameless typed variables accessed through pointers

// create a nameless variable of type dataType on the  
//application heap and stores its address in p  
dataType *p = new dataType;  

!12

Type Name Address Data
...

dataType ptr p 0x12345678 0x100436f20

...

Program Stack
Type Address Data

...

dataType 0x100436f20

...

Heap

Accessing members

dataType some_object;  
dataType *p = new dataType;  
// initialize and do stuff with instantiated objects

. . .

string my_string = some_object.getName();  
string another_string = p->getName();

!13

To access member functions
in place of . operator

Deallocating Memory

delete p;  
p = nullptr;

!14

Must do this!!!

Deletes the object
pointed to by p

Avoid Memory Leaks (1)
Occurs when object is created in free store but program no longer has access
to it

dataType *my_ptr = new dataType;  
dataType *your_ptr = new dataType;  
// do stuff with my_ptr and your_ptr

your_ptr = my_ptr;

!15

my_ptr

my_ptr

your_ptr

your_ptr

Object

Object

Object

Inaccessible
Memory Leak

Avoid Memory Leaks (2)
Occurs when object is created in free store but program no longer has
access to it

void leakyFunction(){  
dataType *my_ptr = new dataType;  
dataType *your_ptr = new dataType;  
// do stuff with my_ptr and your_ptr  
}

!16

my_ptr

your_ptr

Object

Object

Inaccessible
Memory Leak

Inaccessible

Left scope of local
pointer variables

Memory Leak

Programmer’s
responsibility to

release free store

Avoid Memory Leaks (2)
Occurs when object is created in free store but program no longer has access to
it

void leakyFunctionFixed(){  
dataType *my_ptr = new dataType;  
dataType *your_ptr = new dataType;  
// do stuff with my_ptr and your_ptr  
delete my_ptr;  
my_ptr = nullptr;  
delete your_ptr;  
your_ptr = nullptr;  
}

!17

my_ptr

your_ptr

Object

Object
Left scope of local
pointer variables

but deleted dynamic
objects first

Avoid Dangling Pointers

Pointer variable that no longer references a valid object

 
delete my_ptr;  
 

delete my_ptr;  
my_ptr = nullptr;

!18

Must do this!!!

my_ptr Object

my_ptr

my_ptr

Dangling Pointer

Fix

Avoid Dangling Pointers

Pointer variable that no longer references a valid object  
 
delete my_ptr;  
my_ptr = nullptr;  
 
 

 
 
 

!19

my_ptr
Object

my_ptr

Dangling Pointeryour_ptr

your_ptr

Avoid Dangling Pointers

Pointer variable that no longer references a valid object 
 
delete my_ptr;  
my_ptr = nullptr;  
 
 

delete your_ptr;// ERROR!!!! No object to delete  
 
 

!20

my_ptr
Object

my_ptr

Dangling Pointeryour_ptr

your_ptr

Avoid Dangling Pointers

Pointer variable that no longer references a valid object  
 
delete my_ptr;  
my_ptr = nullptr;  
 
 

delete my_ptr;  
my_ptr = nullptr;  
your_ptr = nullptr;  

!21

Must set all pointers to nullptr!!!

my_ptr
Object

my_ptr

my_ptr

Dangling Pointeryour_ptr

your_ptr

your_ptr

Fix

What is wrong with the following code?
void someFunction()  
{  

int* p = new int[5];  
int* q = new int[10];

p[2] = 9;  
q[2] = p[2]+5;  
p[0] = 8;  
q[7] = 15;

std::cout<< p[2] << " " << q[2] << std::endl;  
q = p;  
std::cout<< p[0] << " " << q[7] << std::endl;

}
!22

What is wrong with the following code?
void someFunction()  
{  

int* p = new int[5];  
int* q = new int[10];

p[2] = 9;  
q[2] = p[2]+5;  
p[0] = 8;  
q[7] = 15;

std::cout<< p[2] << " " << q[2] << std::endl;  
q = p;  
std::cout<< p[0] << " " << q[7] << std::endl;

}
!23

MEMORY LEAK:
int[10] lost on heap

SEGMENTATION FAULT
int[5] index out of range

MEMORY LEAK:
Did not delete int[5]
before exiting function

Next let’s try a different
implementation for Bag

!24

