
Polymorphism

Tiziana Ligorio
!1



Today’s Plan

Inheritance Recap 
Polymorphism

!2



Announcements

Q: Why use dynamic memory allocation? 

!3



Inheritance Recap

!4



Basic Inheritance
class Printer  
{  
public:  

//Constructor, destructor  
 

void setPaperSize(const int size);  
void setOrientation(const string& orientation);  
void changeCartridge();  
void printDocument(const string& document);  

private:  
// stuff here  

}; //end Printer

class BatchPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void addDocument(const string& document);  
void printAllDocuments();  

private:  
vector<string> documents; //Document queue  

}; //end BatchPrinter

!5



class GraphicsPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void changeCartridge();  
void printDocument(const Picture& picture);  

 
private:  

//stuff here  
}; //end GraphicsPrinter

!6



Basic Inheritance

void initializePrinter(Printer& p)  
BatchPrinter batch;  
initizlizePrinter(batch); //legal because batch is-a printer

Think of argument types as specifying minimum requirements

Base class 
Superclass

Derived Classes 
Subclasses

is-a is-a

!7



Problem

class BatchPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void addDocument(const string& document);  
void printAllDocuments();  

private:  
vector<string> documents; //Document queue  

}; //end BatchPrinter

We would like to print all kinds of documents not just text 
documents should be able to store different types of documents

!8

Can’t store different 
types of documents in 

printer queue



Generalized Document

Whatever the type of document, a printer ultimately 
prints a grid of pixels 

Generalized Document should know how to convert 
itself into a printable format  
 
We want Document to be an interface => not 
concerned with implementation details

!9



!10

Document Document Document Document

Document::convertToPixelArray()  
printPixelArray()

printAllDocuments()



Polymorphism

!11



class BatchPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void addDocument(const Document* document);  
void printAllDocuments();  

private:  
vector<Document*> documents; //Document queue  

}; //end BatchPrinter

!12



class Document:  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const = 0;  
virtual int getPriority() const = 0;  

 
private:  

//stuff here  
}; //end Document

This function has no implementation**

I’ll explain this next

**odd syntax due to historical/political reasons, explained in quote later 
!13

Abstract Class!



class TextDocument: public Document// inherit from Document  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const override;  
virtual int getPriority() const override;  

 
void setFont(const string& font); //text-specific formatting  
void setSize(int size); 

private:  
//stuff here  

}; //end TextDocument Have implementation

!14



class TextDocument: public Document

class GraphicsDocument: public Document

class PortableFormatDocument: public Document

class SpreadsheetDocument: public Document

!15



But how does compiler know whose 
convertToPixelArray() to call? 
TextDocument::convertToPixelArray?  
GraphicsDocument::convertToPixelArray?

!16

GraphicsDocume

TextDocument

TextDocument

MySpecialDocument



Where are we going?

I want to store all kinds of documents in my 
BatchPrinter queue 

I want to access the correct convertToPixelArray() 
method specific to each different document type

!17



BatchPrinter myBatchPrinter;

Document* myTextDocument = new TextDocument;  
Document* myGraphicsDocument = new GraphicsDocument;  
 
//do stuff

myBatchPrinter.addDocument(myTextDocument)  
myBatchPrinter.addDocument(myGraphicsDocument)

myBatchPrinter.printAllDocuments();  
 

myTextDocument->convertToPixelArray();  
myGraphicsDocument->convertToPixelArray();

TextDocument is-a Document 
GraphicsDocument is-a Document 
We can point to objects of derived class  
using pointers to base class

We store in printer queue pointers to Document  
but really can access any derived class document

convertToPixelArray  
is marked virtual so 
the appropriate function call  
is determined at runtime!18

main()



Late Binding via  
Virtual Functions

Avoid statically binding function calls at compile time 

Must declare functions as virtual for late binding

!19



Polymorphism

We just saw an example of polymorphism (literally 
many forms) 

With virtual functions the outcome of an operation  
is determined at execution time 

With basic inheritance we were just saving ourselves 
the trouble of re-writing code 

!20



Abstract Class

Pure virtual function (=0) has no implementation 

Abstract class  
 - Has at least one pure virtual function  
 - Cannot be instantiated because does not have 
 implementation for some/all its member functions 

Document myDocument; //Error!  
Document* myDocument = new Document;//Error!

!21



Bjarne Stroustrup

“The curious =0 syntax was chosen over the obvious 
alternative of introducing a new keyword pure or 
abstract because at the time I saw no chance of 
getting a new keyword accepted. Had I suggested 
pure, Release 2.0 would have shipped without 

abstract classes, I chose abstract classes. Rather than 
risking delay and incurring the certain fights over 

pure, I used the traditional C and C++ convention of  
using 0 to represent ‘not there’ ”

!22



 
 
Base base_object;  
Derived derived_object;  
 
// stuff here

base_object.someMethod(); //calls Base function  
derived_object.someMethod(); // calls Derived function - Overriding!!!  
 
 
 

main()

!23

Recap Basic Inheritance

Base

someMethod();
. . .

Derived

someMethod() override;
. . .



 
 
Base* base_ptr = new Base;  
Base* derived_ptr = new Derived;  
 
// stuff here

base_ptr->someMethod(); //calls Base function  
derived_ptr->someMethod(); // ???  
 
 
 

main()

!24

Recap Polymorphism

Base

someMethod();
. . .

Derived

someMethod() override;
. . .



 
 
Base* base_ptr = new Base;  
Base* derived_ptr = new Derived;  
 
// stuff here

base_ptr->someMethod(); // calls Base function  
derived_ptr->someMethod(); // calls Base function  
 
 
 

Base

someMethod();
. . .

Derived

someMethod() override;
. . .

main()

!25

Recap Polymorphism



 
 
Base* base_ptr = new Base;  
Base* derived_ptr = new Derived;  
 
// stuff here

base_ptr->someMethod(); //calls Base function  
derived_ptr->someMethod(); // call Derived function - LATE BINDING!!!!  
 
 
 

Base

virtual someMethod();
. . .

Derived

someMethod() override;
. . .

main()

!26

Recap Polymorphism



class Document:  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const = 0;  
virtual int getPriority() const = 0;  

 
private:  

//stuff here  
}; //end Document

This function has no implementation**

!27

Recap Abstract Class



Polymorphism without 
abstraction

Superclass need not be abstract 

Virtual functions in superclass need not be pure 
virtual

!28



class InexperiencedSkater: 
public Skater  

{  
public:  

//constructor, destructor  
virtual void slowDown() override;  

private:  
//stuff here  

}; //end InexperiencedSkater  
 
 
void InexperiencedSkater::slowDown()  
{  

fallDown();  
} //end slowDown

Polymorphism without  
Abstract Classes

class Skater  
{  
public:  

//constructor, destructor  
virtual void slowDown();  
//virtual, not pure  
 

private:  
//stuff here  

}; //end Skater

 
 
void Skater::slowDown()  
{  

applyBreaks();  
} //end slowDown

!29

implementation does not 
have virtual or 
override keyword



Polymorphism without  
Abstract Classes

Skater* firstSkater = new Skater;  
firstSkater->slowDown(); // applyBreaks()

Skater* secondSkater = new InexperiencedSkater;  
secondSkater->slowDown(); // fallDown() - LATE BINDING!

!30

main()



Polymorphism without  
Abstract Classes

Need not override non-pure virtual functions 

class StuntSkater: public Skater  
{  
public:  

//constructor, destructor - note no mention of slowDown  
void frontFlip();  
void backFlip();  

private:  
//stuff here  

}; //end StuntSkater  
 
 
// stuff here  
 
 
Skater* stunt_skater = new StuntSkater;  
stunt_skater->slowDown(); // applyBreaks()

!31



Warning

class NotVirtual  
{  
public:  

void notAVirtualFunction();  
}; //end NotVirtual

class NotVirtualDerived: public NotVirtual  
{  
public:  

void notAVirtualFunction() override;  
}; //end NotVirtualDerived  
 
 
 
NotVirtual* nv = new NotVirtualDerived;  
nv->notAVirtualFunction(); // OUCH!!! calls NotVirtual’s member  

   // instead of NotVirtualDerived’s member

When using pointers to base 
class, to let derived classes 
override functions in base 
class must make the base 
class’s function virtual

!32



More design considerations

Back to Document class 

Assume we realize all types of documents have 
width and height data members 

Makes sense to move them into base class 

Don’t want client to have direct access to data 
members

!33



class Document:  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const = 0;  
virtual int getPriority() const = 0;  

 
private:  

int width, height; //Problem!!!  
//stuff here  

}; //end Document

!34



protected Access in Base Class

class Document:  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const = 0;  
virtual int getPriority() const = 0;  

 
protected:  

int width, height;  
//stuff here

private:  
//stuff here  

}; //end Document

!35



Access Specifiers Base Class 
members

public  
 accessible by everyone 

private  
 accessible within class and by friends 

protected  
 accessible within class, by friends and by derived 
classes

!36



Access Specifiers for Inheritance

class Derived: public Base  
{  
public:  

//Stuff here  
 

 
private:  

//Stuff here

 
}; //end Derived

!37



Inheritance accessibility

Access in Base Class Inheritance Method Access in Derived Class
public

public
public

protected protected
private no access

public
protected

protected
protected protected
private no access

public
private

private
protected private
private no access

We will not discuss the details of protected and private inheritance in this course

is-a

is-implemented-as

is-implemented-and 
-inherited-as

!38



override specifier 

Explicitly tell compiler you mean to override a function 

Compiler will check! 

Also self-documenting 

class BaseClass  
{  

virtual void f(int);  
};  
 
class DerivedClass: public BaseClass  
{  

virtual void f(float) override; //Compile-time error  
};

!39



final specifier
- Prevents inheritance 
- Prevents deriving classes from overriding methods 

class A  
{  

virtual void f();  
};  
 
class B : public A  
{  

void f() final override; //cannot override f()  
};  
 
class C: public B final  //cannot inherit from C  
{  

void f() override; //Error, f is final!  
}
class D: public C{} //Error C is final!

!40



Runtime Costs of Virtual Functions

!41

Function call overhead 
- C++ maintains virtual function 
tables that store pointers to each  
virtual function 
 
- Determine which function to call 
at execution time by looking-up  
v-table of object being pointed to 

Clever! But still  
 Slower 
 Extra space for v-tables

Overhead -> mark individual functions virtual to take advantage of 
polymorphism only when appropriate 
  

Fully polymorphic inheritance would be overkill in most cases 



Recap

Polymorphism -> virtual functions 

Pure vs non-pure virtual functions 

Polymorphism with or without abstract classes 

override and final

Overhead

!42



Review Questions

!43



Polymorphism Recap

Base-class pointer to Derived class 

Determine behavior at runtime (late binding) 

HOW?  virtual

WHY? store different type of (Derived) objects in 
same container and retain access to each object’s 
distinct behavior

!44



Review Questions

What is OOP?

!45



Review Questions

What is an ADT?

!46



Review Questions

Why dynamic memory 
allocation? 

When would you use it? What 
problems does it solve?

!47



Review Questions

What does final mean?

!48



Review Questions

 How is basic inheritance 
different from 
polymorphism?

!49



Review Questions

 Why Inheritance? 

When would you use it? What 
problems does it solve?

!50



Review Questions

What is the overhead in 
Polymorphism?

!51



Review Questions

What is Information hiding?

!52


