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Details

There is a lot of detail one needs to pay attention to 
when using Polymorphism 

The following slides are for those of you who wish to 
dig a little deeper into the topic but will not be on 
exams 

These are marked with 
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Need to pay extra attention to destructors!!! 

With Polymorphism destructor MUST always be 
virtual!!!
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class BaseClass()  
{  
public:  

BaseClass();  
~BaseClass();  

 
}; //end BaseClass  
 

class DerivedClass:  
public BaseClass  

{  
public:  

DerivedClass();  
~DerivedClass();  

 
private:  

char* myString;  
}; //end DerivedClass

DerivedClass::DerivedClass()  
{  

//allocate some memory  
myString = new char[128];  

}

DerivedClass::~DerivedClass()  
{  

//deallocate memory  
delete[] myString;  

}

main()

BaseClass* myClass = new DerivedClass;
delete myClass; //PROBLEM!!!

BaseClass destructor is invoked.  
Need to allow late binding for destructor!!!
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class BaseClass()  
{  
public:  

BaseClass();  
virtual ~BaseClass();  

 
}; //end BaseClass

class DerivedClass:  
public BaseClass  

{  
public:  

DerivedClass();  
~DerivedClass();  

 
private:  

char* myString;  
}; //end DerivedClass

DerivedClass::DerivedClass()  
{  

//allocate some memory  
myString = new char[128];  

}

DerivedClass::~DerivedClass()  
{  

//deallocate memory  
delete[] myString;  

}

main()

BaseClass* myClass = new DerivedClass;
delete myClass; // both destructors  
 //invoked

Problem fixed!  BOTH destructors invoked

Fix
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Virtual Functions in  
Constructors and Destructors

Recall 
 - BaseClass constructor invoked before DerivedClass’ 
 - DerivedClass destructor invoked before BaseClass’ 

If virtual function in constructor/destructor is called 
polymorphically could try to access uninitialized/deallocated 
data 

C++ prevents this by calling virtual functions in constructors/
destructors non-polymorphically
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class BaseClass()  
{  
public:  

BaseClass()  
{  

someVirtualFunction();  
}  
virtual void someVirtualFunction()  
{  

cout << “Base” << endl;  
}  

 
}; //end BaseClass

class DerivedClass: public BaseClass  
{  
public:  

 
virtual void someVirtualFunction()  
{  

cout << “Derived” << endl;  
}  

 
}; //end DerivedClass

main()  

DerivedClass myDerivedClas;  
————————————————————————————  
 
Standard output: 
Base
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Invoking Virtual Members 
Non-Virtually

Sometimes may need to call the BaseClass version 
of a virtual function from a DerivedClass 

void DerivedClass::someFunction()  
{  

BaseClass::someVirtualFunction(); // no polymorphism  
//do more stuff  

}  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Copy Constructors and Assignment 
Operators with Inheritance

Can become complicated beasts with inheritance!!! 

Must always call explicitly BaseClass within 
DerivedClass

!9



class Base()  
{  
public:  

Base();  
Base(const Base& other);  
Base& operator=(const Base& other);  
virtual ~Base();  

   //other public and protected members here that will be inherited  
 

}; //end BaseClass

class Derived: public Base  
{  
public:  

Derived();  
Derived(const Derived& other);  
Derived& operator=(const Derived& other);  
virtual ~Derived();  

private:  
char* theString;  //a C string  
//generic helper functions  
void copyOther(const Derived& other);  
void clear();  

}; //end DerivedClass
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//generic “copy other” private member function 
void Derived::copyOther(const Derived& other)  
{  

theString = new char[strlen(other.theString)+1];  
strcpy(theString, other.theString);  

}  
 
// clear out private member function  
void Derived::clear()  
{  

delete[] theString; //deallocate memory  
theString = NULL;   //avoid dangling pointer  

}

Derived Implementation
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//copy constructor  
Derived::Derived(const Derived& other)  
{  

copyOther(other);  
}  
 
//assignment operator  
Derived& Derived::operator=(const Derived& other)  
{  

if(this != other)  
{  

clear();  
copyOther(other);  

}  
return *this;  

}  
 

Derived Incorrect Implementation
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//copy constructor  
Derived::Derived(const Derived& other)  
{  

copyOther(other); //WRONG!!!  
}  
 
//assignment operator  
Derived& Derived::operator=(const Derived& other)  
{  

if(this != other)  
{  

clear();  
copyOther(other); //WRONG!!!  

}  
return *this;  

}  
 

Derived Incorrect Implementation
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Obj1 
Base

Obj1 
Derived

Obj2 
Base

Obj2 
Derived

Obj1 
Base

Obj2 
Derived

Obj2 
Base

Obj2 
Derived

After invoking copy constructor  
or assignment operator

PROBLEM!!!
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//copy constructor  
Derived::Derived(const Derived& other): Base(other) //CORRECT!!!  
{  

copyOther(other);  
}  
 
//assignment operator  
Derived& Derived::operator=(const Derived& other)  
{  

if(this != other)  
{  

clear();  
Base::operator= (other);//CORRECT!!!Invoke Base operator= 

//explicitly  
copyOther(other);  

}  
return *this;  

}  
 

Derived Correct Implementation
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Slicing
Copy ONLY BaseClass portion of object 
 Opposite of previous case 

Base* ptr1;  
Base* ptr2 = new Derived; // pointer of type Base that points to type Derived  
 
//do stuff  
 
*ptr1 = *ptr2; //copy value pointed to by ptr2 into variable pointed to by 

//ptr1

Note potential problem!!! 
The above expands into  
ptr1->operator= (*ptr2);  
Invoking the operator= of the Base loosing all data of Derived 
portion
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*ptr1 
Base

*ptr1 
Derived

*ptr2 
Base

*ptr2 
Derived

*ptr2 
Base

Nothing 
copied 
here

*ptr2 
Base

*ptr2 
Derived

*ptr1 = *ptr2

PROBLEM!!!
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Slicing via Copy Constructor

void doSomething(Base baseObject)  
{  

//do something  
}  
 
Derived myDerived;  
doSomething(myDerived);

PROBLEM!!! Parameter baseObject will be 
initialized using Base copy constructor  
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Slicing  
Ever more insidiously!!!

vector<Base> myBaseVector;  
Base* myBasePtr = someFunction(); //pointer to Base  
//ATTENTION myBasePtr could point to Derived object  
myBaseVector.push_back(*myBasePtr);

If someFunction returns a pointer to an object of type Derived  
calling push_back on object of type Derived will likely slice the 
object storing only its Base data 

Possible solution: store pointers in myBaseVector instead of objects
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Casting
Forcing one datatype to be converted into another 

Up-casting (Derived to Base) automatically available 
through inheritance  
Base* basePtr;  
Derived* derivedPtr;  
//do stuff  
basePtr = derivedPtr; //automatic conversion Derived is-a Base

Down-casting (Base to Derived) 
Base* basePtr = new Derived; // pointer of type Base points to 
Derived  
//do stuff  
Derived* derivedPtr = (Derived*) basePtr; 
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Casting

Classic C++ cast too powerful => no checks.  
Could write something totally nonsensical 

Base* basePtr;  
vector<double>* myVectorPtr = (vector<double>*) basePtr;  
//PROBLEM!! Makes no sense, BUT no compiler error 
 
 
const Base* basePtr = new Derived;  
// do stuff  
Derived* derivedPtr = (Derived*) basePtr;   
//PROBLEM!!! Lost constness of Base object  
//derivedPtr  is now free to modify it
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static_cast
static_cast checks at compile time that cast "makes sense” 

Allows: 
 - Converting between primitive types (e.g. int to float) 
 - Converting pointers or references of Derived type to pointers or 
references of Base type (e.g. Derived* to Base*) where target is at least 
as const as the source 
 - Converting pointers or references of Base type to pointers or 
references of Derived type (e.g. Base* to Derived*) where target is at 
least as const as the source  

Base* basePtr = new Derived;  
// do stuff  
Derived* derivedPtr = static_cast<Derived*>(basePtr); 
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dynamic_cast

If Base* did not point to Derived object, static_cast 
would succeed  
 => runtime problems  
 e.g. access Derived data members not present in Base 

Base* basePtr = new Base;  
Derived* derivedPtr1 = (Derived*)basePtr; //BAD!!!  
Derived* derivedPtr2 = static_cast<Derived*>(basePtr); //BAD!!!  
Derived* derivedPtr3 = dynamic_cast<Derived*>(basePtr); //GOOD!!!

Will return a NULL pointer
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Conclusion

Polymorphism is easy, Just put virtual 
everywhere and the compiler will take care of the 
rest! 
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Conclusion

Polymorphism is easy, Just put virtual 
everywhere and the compiler will take care of the 
rest! 
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Real Conclusion

Overhead! Use it only when useful/necessary 

Carefully craft constructors 

Always make destructor virtual 

Beware of Slicing (in all its forms) 

Beware of casting and use level most appropriate 
and safe for your situation
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