
More Polymorphism

Tiziana Ligorio
!1

Details

There is a lot of detail one needs to pay attention to
when using Polymorphism

The following slides are for those of you who wish to
dig a little deeper into the topic but will not be on
exams

These are marked with

!2

Need to pay extra attention to destructors!!!

With Polymorphism destructor MUST always be
virtual!!!

!3

class BaseClass()  
{  
public:  

BaseClass();  
~BaseClass();  

 
}; //end BaseClass  
 

class DerivedClass:  
public BaseClass  

{  
public:  

DerivedClass();  
~DerivedClass();  

 
private:  

char* myString;  
}; //end DerivedClass

DerivedClass::DerivedClass()  
{  

//allocate some memory  
myString = new char[128];  

}

DerivedClass::~DerivedClass()  
{  

//deallocate memory  
delete[] myString;  

}

main()

BaseClass* myClass = new DerivedClass;
delete myClass; //PROBLEM!!!

BaseClass destructor is invoked.
Need to allow late binding for destructor!!!

!4

class BaseClass()  
{  
public:  

BaseClass();  
virtual ~BaseClass();  

 
}; //end BaseClass

class DerivedClass:  
public BaseClass  

{  
public:  

DerivedClass();  
~DerivedClass();  

 
private:  

char* myString;  
}; //end DerivedClass

DerivedClass::DerivedClass()  
{  

//allocate some memory  
myString = new char[128];  

}

DerivedClass::~DerivedClass()  
{  

//deallocate memory  
delete[] myString;  

}

main()

BaseClass* myClass = new DerivedClass;
delete myClass; // both destructors  
 //invoked

Problem fixed! BOTH destructors invoked

Fix

!5

Virtual Functions in
Constructors and Destructors

Recall 
 - BaseClass constructor invoked before DerivedClass’ 
 - DerivedClass destructor invoked before BaseClass’

If virtual function in constructor/destructor is called
polymorphically could try to access uninitialized/deallocated
data

C++ prevents this by calling virtual functions in constructors/
destructors non-polymorphically

!6

class BaseClass()  
{  
public:  

BaseClass()  
{  

someVirtualFunction();  
}  
virtual void someVirtualFunction()  
{  

cout << “Base” << endl;  
}  

 
}; //end BaseClass

class DerivedClass: public BaseClass  
{  
public:  

 
virtual void someVirtualFunction()  
{  

cout << “Derived” << endl;  
}  

 
}; //end DerivedClass

main()  

DerivedClass myDerivedClas;  
————————————————————————————  
 
Standard output: 
Base

!7

Invoking Virtual Members
Non-Virtually

Sometimes may need to call the BaseClass version
of a virtual function from a DerivedClass

void DerivedClass::someFunction()  
{  

BaseClass::someVirtualFunction(); // no polymorphism  
//do more stuff  

}  

!8

Copy Constructors and Assignment
Operators with Inheritance

Can become complicated beasts with inheritance!!!

Must always call explicitly BaseClass within
DerivedClass

!9

class Base()  
{  
public:  

Base();  
Base(const Base& other);  
Base& operator=(const Base& other);  
virtual ~Base();  

 //other public and protected members here that will be inherited  
 

}; //end BaseClass

class Derived: public Base  
{  
public:  

Derived();  
Derived(const Derived& other);  
Derived& operator=(const Derived& other);  
virtual ~Derived();  

private:  
char* theString; //a C string  
//generic helper functions  
void copyOther(const Derived& other);  
void clear();  

}; //end DerivedClass
!10

//generic “copy other” private member function 
void Derived::copyOther(const Derived& other)  
{  

theString = new char[strlen(other.theString)+1];  
strcpy(theString, other.theString);  

}  
 
// clear out private member function  
void Derived::clear()  
{  

delete[] theString; //deallocate memory  
theString = NULL; //avoid dangling pointer  

}

Derived Implementation

!11

 
//copy constructor  
Derived::Derived(const Derived& other)  
{  

copyOther(other);  
}  
 
//assignment operator  
Derived& Derived::operator=(const Derived& other)  
{  

if(this != other)  
{  

clear();  
copyOther(other);  

}  
return *this;  

}  
 

Derived Incorrect Implementation

!12

 
//copy constructor  
Derived::Derived(const Derived& other)  
{  

copyOther(other); //WRONG!!!  
}  
 
//assignment operator  
Derived& Derived::operator=(const Derived& other)  
{  

if(this != other)  
{  

clear();  
copyOther(other); //WRONG!!!  

}  
return *this;  

}  
 

Derived Incorrect Implementation

!13

Obj1
Base

Obj1
Derived

Obj2
Base

Obj2
Derived

Obj1
Base

Obj2
Derived

Obj2
Base

Obj2
Derived

After invoking copy constructor
or assignment operator

PROBLEM!!!

!14

 
//copy constructor  
Derived::Derived(const Derived& other): Base(other) //CORRECT!!!  
{  

copyOther(other);  
}  
 
//assignment operator  
Derived& Derived::operator=(const Derived& other)  
{  

if(this != other)  
{  

clear();  
Base::operator= (other);//CORRECT!!!Invoke Base operator=

//explicitly  
copyOther(other);  

}  
return *this;  

}  
 

Derived Correct Implementation

!15

Slicing
Copy ONLY BaseClass portion of object 
 Opposite of previous case

Base* ptr1;  
Base* ptr2 = new Derived; // pointer of type Base that points to type Derived  
 
//do stuff  
 
*ptr1 = *ptr2; //copy value pointed to by ptr2 into variable pointed to by

//ptr1

Note potential problem!!! 
The above expands into  
ptr1->operator= (*ptr2);  
Invoking the operator= of the Base loosing all data of Derived
portion

!16

*ptr1
Base

*ptr1
Derived

*ptr2
Base

*ptr2
Derived

*ptr2
Base

Nothing
copied
here

*ptr2
Base

*ptr2
Derived

*ptr1 = *ptr2

PROBLEM!!!

!17

Slicing via Copy Constructor

void doSomething(Base baseObject)  
{  

//do something  
}  
 
Derived myDerived;  
doSomething(myDerived);

PROBLEM!!! Parameter baseObject will be
initialized using Base copy constructor

!18

Slicing
Ever more insidiously!!!

vector<Base> myBaseVector;  
Base* myBasePtr = someFunction(); //pointer to Base  
//ATTENTION myBasePtr could point to Derived object  
myBaseVector.push_back(*myBasePtr);

If someFunction returns a pointer to an object of type Derived  
calling push_back on object of type Derived will likely slice the
object storing only its Base data

Possible solution: store pointers in myBaseVector instead of objects

!19

Casting
Forcing one datatype to be converted into another

Up-casting (Derived to Base) automatically available
through inheritance  
Base* basePtr;  
Derived* derivedPtr;  
//do stuff  
basePtr = derivedPtr; //automatic conversion Derived is-a Base

Down-casting (Base to Derived) 
Base* basePtr = new Derived; // pointer of type Base points to
Derived  
//do stuff  
Derived* derivedPtr = (Derived*) basePtr;

!20

Casting

Classic C++ cast too powerful => no checks.  
Could write something totally nonsensical

Base* basePtr;  
vector<double>* myVectorPtr = (vector<double>*) basePtr;  
//PROBLEM!! Makes no sense, BUT no compiler error 
 
 
const Base* basePtr = new Derived;  
// do stuff  
Derived* derivedPtr = (Derived*) basePtr;  
//PROBLEM!!! Lost constness of Base object  
//derivedPtr is now free to modify it

!21

static_cast
static_cast checks at compile time that cast "makes sense”

Allows: 
 - Converting between primitive types (e.g. int to float) 
 - Converting pointers or references of Derived type to pointers or
references of Base type (e.g. Derived* to Base*) where target is at least
as const as the source 
 - Converting pointers or references of Base type to pointers or
references of Derived type (e.g. Base* to Derived*) where target is at
least as const as the source

Base* basePtr = new Derived;  
// do stuff  
Derived* derivedPtr = static_cast<Derived*>(basePtr);

!22

dynamic_cast

If Base* did not point to Derived object, static_cast
would succeed  
 => runtime problems  
 e.g. access Derived data members not present in Base

Base* basePtr = new Base;  
Derived* derivedPtr1 = (Derived*)basePtr; //BAD!!!  
Derived* derivedPtr2 = static_cast<Derived*>(basePtr); //BAD!!!  
Derived* derivedPtr3 = dynamic_cast<Derived*>(basePtr); //GOOD!!!

Will return a NULL pointer

!23

Conclusion

Polymorphism is easy, Just put virtual
everywhere and the compiler will take care of the
rest!

!24

Conclusion

Polymorphism is easy, Just put virtual
everywhere and the compiler will take care of the
rest!

!25

Real Conclusion

Overhead! Use it only when useful/necessary

Carefully craft constructors

Always make destructor virtual

Beware of Slicing (in all its forms)

Beware of casting and use level most appropriate
and safe for your situation

!26

