
Recursion

Tiziana Ligorio!1

Today’s Plan

Announcements

Recursion

!2

!3

What do these images have in common

!4

They contain a SMALLER copy of THEMSELVES

Print String Backwards

“Hello”

!5

Print String Backwards

“Hello”

Procedure:

If there are characters to print  
 Print the last character and reverse the rest

!6

Recursive Call
Notice it’s the last thing it does

Print String Backwards

Hello 
o

Hello

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 

Hell
Hello

Program Stack

Active functions

Hello 
o  
 Hell  
 o l

  

 

Print String Backwards

!9

Hell
Hello

!9

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell  
 o l

 Hel  

 

!10

Hell
Hello

Hel

!10

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell  
 o l

 Hel  
 o l l

 

!11

Hell
Hello

Hel

!11

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell  
 o l

 Hel  
 o l l

 He  

!12

Hell
Hello

Hel
He

!12

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
  

!13

Hell
Hello

Hel
He

!13

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 

!14

Hell
Hello

Hel
He
H

!14

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

!15

Hell
Hello

Hel
He
H

!15

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

!16

BASE CASE

!16

Hell
Hello

Hel
He
H

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Hell
Hello

Hel
He
H

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Hell
Hello

Hel
He

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Hell
Hello

Hel
He

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Hell
Hello

Hel

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Hell
Hello

Hel

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Hell
Hello

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Hell
Hello

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Hello

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Hello

Program Stack

Active functions

Print String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

Program Stack

Lecture Activity

If I hand you a printed dictionary (an actual book) and
ask you to find the word “Kalimba”, what do you do?

Write down precise steps (a procedure) as if someone
who doesn’t know what a dictionary is must follow
your instructions.

!27

!28

Look in ?

LOOK FOR WORD “Kalimba” IN DICTIONARY

- Open dictionary at random page

_ If “Kalimba” is on page FOUND!!!

- Else if “Kalimba” is lexicographically < first word on
page 
 LOOK FOR WORD “Kalimba” IN LOWER HALF

- Else if “Kalimba” is lexicographically > last word on page  
 LOOK FOR WORD “Kalimba” IN UPPER HALF

!29

Recursive Call

Recursive Call

How is this different from recursive solution to print
backwards?

!30

How is this different from recursive solution to print
backwards?

- Two recursive calls

- Execute either one or the other

- Cuts problem in 1/2

!31

The images in the next slides were adapted from
Keith Schwarz at Stanford University

!32

!33

!34

!35

!36

!37

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent orientation.
3. It has a di$erent size.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent orientation.
3. It has a di$erent size.
4. It has a di$erent order.

!38

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent orientation.
3. It has a di$erent size.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent orientation.
3. It has a di$erent size.
4. It has a di$erent order.

!39

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent size.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent size.
4. It has a di$erent order.

!40

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

!41

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

!42

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

!43

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-0 tree.

!44

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-1 tree.

!45

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-2 tree.

!46

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-3 tree.

!47

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-4 tree.

!48

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-11 tree.

Lecture Activity

Give a sequence of precise instructions in English
(algorithm) to DRAW an order-3 fractal tree

!49

Lecture Activity

Give a sequence of precise instructions in English
(algorithm) to DRAW an order-3 fractal tree

Hint:

!50

Draw a line and then

!51

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

What di$erentiates the smaller
tree from the bigger one?

1. It’s at a di$erent position.
2. It’s at a di$erent size.
3. It has a di$erent orientation.
4. It has a di$erent order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-3 tree.
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

Lecture Activity

- draw a line

- tilt the canvas 45˚ left and draw an order-2 tree

- tilt the canvas 45˚ right and draw an order-2 tree

!52

Recursive Call

Recursive Call

Lecture Activity

- draw a line

- tilt the canvas 45˚ left and draw an order-2 tree

- tilt the canvas 45˚ right and draw an order-2 tree

!53

Lecture Activity

- draw a line  
- tilt the canvas 45˚ left and draw an order-2 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-1 tree 
 - tilt the canvas 45˚ right and draw an order-1 tree

- tilt the canvas 45˚ right and draw an order-2 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-1 tree 
 - tilt the canvas 45˚ right and draw an order-1 tree

!54

Lecture Activity

- draw a line  
- tilt the canvas 45˚ left and draw an order-2 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-1 tree 
 - tilt the canvas 45˚ right and draw an order-1 tree

- tilt the canvas 45˚ right and draw an order-2 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-1 tree 
 - tilt the canvas 45˚ right and draw an order-1 tree

!55

- draw a line 
- tilt the canvas 45˚ left and draw an order-2 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-1 tree  
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-0 tree  
 - tilt the canvas 45˚ right and draw an order-1 tree  
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-0 tree  
- tilt the canvas 45˚ right and draw an order-2 tree  
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-1 tree  
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-0 tree  
 - tilt the canvas 45˚ right and draw an order-1 tree  
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-0 tree

Lecture Activity

!56

- draw a line  
- tilt the canvas 45˚ left and draw an order-2 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-1 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-1 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-0 tree 
- tilt the canvas 45˚ right and draw an order-2 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-1 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-1 tree 
 - draw a line 
 - tilt the canvas 45˚ left and draw an order-0 tree 
 - tilt the canvas 45˚ right and draw an order-0 tree

Nothing to draw at order 0
We stop!

BASE CASE

Lecture Activity

!57

In general for n

- draw a line

- tilt the canvas 45˚ left and draw and order-(n-1) tree

- tilt the canvas 45˚ right and draw and order-(n-1) tree

!58

Check This Out!!!

http://recursivedrawing.com/

!59

Different Flavors of Recursion

Reverse String: write first character, reverse the
remaining single smaller string

Dictionary: either inspect upper-half or lower-half

Fractal Tree: draw both the left order-(n-1) and right
order-(n-1) trees

All solve a problem by breaking it up into one or
more smaller “similar” problems

!60

Recursive Problem-Solving
if (problem is sufficiently simple) {  
 

directly solve the problem  
i.e. do something and/or return the solution  

 
} else {  

 
split problem up into one or more smaller

problems with the same structure as the original

solve some or all of those smaller problems

do something or combine results to return
solution if necessary  

}
!61

Recursive Problem-Solving
if(problem is sufficiently simple){  
 

directly solve the problem  
i.e. do something and/or return the solution  

 
} else{  

 
split problem up into one or more smaller

problems with the same structure as the original

solve some or all of those smaller problems

do something or combine results to return
solution if necessary  

}
!62

BASE CASE

Why Recursion

An alternative to iteration

Not always practical (some compilers optimize tail-
recursive algorithms)

Elegant and intuitive solution for some problems

!63

Factorial

 

 1 x 2 x 3 x … x n

For example:  
0!=1,1!=1, 2!=2, 3!=6, 4!=24, 5!=120 

!64

n!= k
k=1

n

∏

The empty product

But what if we start from n?

n!=

!65

But what if we start from n?

n! = n x (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

!66

What is this?

But what if we start from n?

n! = n x (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

!67

(n-1)!

But what if we start from n?

n! = n x (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

(n-1)! = (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

!68

(n-1)!

What is this?

But what if we start from n?

n! = n x (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

(n-1)! = (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

!69

(n-1)!

(n-2)!

Recursion that Returns a Value

n! = n x (n-1)!

!70

Same function being called within solution

Recursion that Returns a Value

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n. 
 @pre: n must be greater than or equal to 0.  
 @post: None.  
 @return: The factorial of n; n is unchanged. */  
int factorial(int n)  
{  
 if (n == 0)  
 return 1;  
 else // n > 0 : n-1 >= 0, fact(n-1) returns (n-1)!  
 return n * factorial(n - 1); // n * (n-1)! is n!  
} // end fact

!71

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n. 
 @pre: n must be greater than or equal to 0.  
 @post: None.  
 @return: The factorial of n; n is unchanged. */  
int factorial(int n)  
{  
 if (n == 0)  
 return 1;  
 else // n > 0 : n-1 >= 0, fact(n-1) returns (n-1)!  
 return n * factorial(n - 1); // n * (n-1)! is n!  
} // end fact

Recursion that Returns a Value

!72

BASE CASE

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n. 
 @pre: n must be greater than or equal to 0.  
 @post: None.  
 @return: The factorial of n; n is unchanged. */  
int factorial(int n)  
{  
 if (n == 0)  
 return 1;  
 else // n > 0 : n-1 >= 0, fact(n-1) returns (n-1)!  
 return n * factorial(n - 1); // n * (n-1)! is n!  
} // end fact

Recursion that Returns a Value

!73

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n. 
 @pre: n must be greater than or equal to 0.  
 @post: None.  
 @return: The factorial of n; n is unchanged. */  
int factorial(int n)  
{  
 if (n == 0)  
 return 1;  
 else // n > 0 : n-1 >= 0, fact(n-1) returns (n-1)!  
 return n * factorial(n - 1); // n * (n-1)! is n!  
} // end fact

Recursion that Returns a Value

!74

BASE CASE

WILL LEAD TO
BASE CASE

!75

Writing a String Backwards

writeBackward(string s)  
{  

if(the string is empty)  
Do nothing - this is the base case  

else  
Write the last character of s  
writeBackward(s minus the last char)  

}

!76

Recursion that
Performs an Action

/** Prints a string backward.  
 @post: The string s is printed backwards  
 @param: s The string to write backwards */

void writeBackward(string s)
{  
 size_t length = s.size(); // Length of string  
 if (length > 0)//implicit base case: if length == 0 do nothing 
 {  
 // Print the last character  
 cout << s.substr(length - 1, 1);
  
 // Print the rest of the string backwards - recursive call 
 writeBackward(s.substr(0, length - 1));  
 } // end if
 // length == 0 is the base case - do nothing 
} // end writeBackward

!77

/** Prints a string backward.  
 @post: The string s is printed backwards  
 @param: s The string to write backwards */

void writeBackward(string s)
{  
 size_t length = s.size(); // Length of string  
 if (length > 0)//implicit base case: if length == 0 do nothing 
 {  
 // Print the last character  
 cout << s.substr(length - 1, 1);
  
 // Print the rest of the string backwards - recursive call 
 writeBackward(s.substr(0, length - 1));  
 } // end if
 // length == 0 is the base case - do nothing 
} // end writeBackward

!78

WILL LEAD TO
BASE CASE

Recursion that
Performs an Action

Write String Backwards

Hello 
o  
 Hell 
 o l

 Hel 
 o l l

 He  
 o l l e 
 H 
 o l l e H

!79

BASE CASE

